
If the given values are $A+B=\dfrac{\pi }{3}$ and $\cos A+\cos B=1$, then which following options are true:
(a) $\cos \left( A-B \right)=\dfrac{1}{3}$.
(b) $\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}}$.
(c) $\cos \left( A-B \right)=\dfrac{-1}{3}$.
(d) $\left| \cos A-\cos B \right|=\dfrac{1}{2\sqrt{3}}$.
Answer
579.3k+ views
Hint: We use trigonometric transformation for $\cos A+\cos B=1$. After transforming the equation we substitute the given value $A+B=\dfrac{\pi }{3}$ in it and we do some suitable modifications to cosine function to find the value of $\cos \left( A-B \right)$. Now, to find the value of $\left| \cos A-\cos B \right|$, we use trigonometric transformation for equation present inside the modulus. We calculate all the required values by using trigonometric identities to get the result.
Complete step-by-step solution:
We have given that the values are $A+B=\dfrac{\pi }{3}$ and $\cos A+\cos B=1$. We need to check which are the true among the given options.
Let us keep $A+B=\dfrac{\pi }{3}$ as equation (1).
So, we have $\cos A+\cos B=1$.
From trigonometric transformations we know that $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right).\cos \left( \dfrac{A-B}{2} \right)$.
We have $2\cos \left( \dfrac{A+B}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
From the equation we have a value $A+B=\dfrac{\pi }{3}$, we substitute this in the above equation.
We have $2\cos \left( \dfrac{\dfrac{\pi }{3}}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
We have $2\cos \left( \dfrac{\pi }{6} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
We know the value of $\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}$.
We have $2.\left( \dfrac{\sqrt{3}}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
We have $\sqrt{3}.\cos \left( \dfrac{A-B}{2} \right)=1$.
We have $\cos \left( \dfrac{A-B}{2} \right)=\dfrac{1}{\sqrt{3}}$ -------(2).
Let us square equation (2) on both sides.
We have ${{\cos }^{2}}\left( \dfrac{A-B}{2} \right)={{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}$.
We have ${{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{1}{3}$.
Let us multiply both sides with ‘2’.
We have $2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=2\times \dfrac{1}{3}$.
We have $2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{2}{3}$.
Let us subtract both sides with ‘1’.
We have \[2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)-1=\dfrac{2}{3}-1\].
We have $2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)-1=\dfrac{-1}{3}$.
We know that $\cos \left( 2\theta \right)=2{{\cos }^{2}}\left( \theta \right)-1$.
We have $\cos \left( 2\times \dfrac{A-B}{2} \right)=\dfrac{-1}{3}$.
We have $\cos \left( A-B \right)=\dfrac{-1}{3}$.
$\therefore$ The value of $\cos \left( A-B \right)=\dfrac{-1}{3}$ ------(3).
Now we need to find the value of $\left| \cos A-\cos B \right|$ to check the remaining options.
We have $\left| \cos A-\cos B \right|$ and from trigonometric transformations, we have $\cos A-\cos B=-2.\sin \left( \dfrac{A+B}{2} \right).\sin \left( \dfrac{A-B}{2} \right)$.
We have $\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{A+B}{2} \right).\sin \left( \dfrac{A-B}{2} \right) \right|$ -------(4).
Let us find the value of $\sin \left( \dfrac{A-B}{2} \right)$ first. From equation (2), we have got ${{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{1}{3}$.
For any value of $\theta $, we have ${{\sin }^{2}}\left( \theta \right)=1-{{\cos }^{2}}\left( \theta \right)$.
So, we have ${{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=1-{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)$.
${{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=1-\dfrac{1}{3}$.
${{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{2}{3}$.
$\sin \left( \dfrac{A-B}{2} \right)=\sqrt{\dfrac{2}{3}}$.
We use $\sin \left( \dfrac{A-B}{2} \right)=\sqrt{\dfrac{2}{3}}$ and $A+B=\dfrac{\pi }{3}$ in equation (4).
$\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{\dfrac{\pi }{3}}{2} \right).\sqrt{\dfrac{2}{3}} \right|$.
$\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{\pi }{6} \right).\sqrt{\dfrac{2}{3}} \right|$.
We know that $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$.
$\left| \cos A-\cos B \right|=\left| -2.\left( \dfrac{1}{2} \right).\left( \sqrt{\dfrac{2}{3}} \right) \right|$.
$\left| \cos A-\cos B \right|=\left| -\sqrt{\dfrac{2}{3}} \right|$.
We know that $\left| x \right|>0$.
So, we get $\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}}$ -------(5).
From equations (3) and (5), we got $\cos \left( A-B \right)=\dfrac{-1}{3}$ and $\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}}$.
$\therefore$ The correct options are (b) and (c).
Note: Whenever we get problems that involve the sum of two trigonometric functions each of different angles, we start by using trigonometric transformation. We should use trigonometric identities and conversions of $\theta $ to $2\theta $, wherever required throughout the problem.
Complete step-by-step solution:
We have given that the values are $A+B=\dfrac{\pi }{3}$ and $\cos A+\cos B=1$. We need to check which are the true among the given options.
Let us keep $A+B=\dfrac{\pi }{3}$ as equation (1).
So, we have $\cos A+\cos B=1$.
From trigonometric transformations we know that $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right).\cos \left( \dfrac{A-B}{2} \right)$.
We have $2\cos \left( \dfrac{A+B}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
From the equation we have a value $A+B=\dfrac{\pi }{3}$, we substitute this in the above equation.
We have $2\cos \left( \dfrac{\dfrac{\pi }{3}}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
We have $2\cos \left( \dfrac{\pi }{6} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
We know the value of $\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}$.
We have $2.\left( \dfrac{\sqrt{3}}{2} \right).\cos \left( \dfrac{A-B}{2} \right)=1$.
We have $\sqrt{3}.\cos \left( \dfrac{A-B}{2} \right)=1$.
We have $\cos \left( \dfrac{A-B}{2} \right)=\dfrac{1}{\sqrt{3}}$ -------(2).
Let us square equation (2) on both sides.
We have ${{\cos }^{2}}\left( \dfrac{A-B}{2} \right)={{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}$.
We have ${{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{1}{3}$.
Let us multiply both sides with ‘2’.
We have $2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=2\times \dfrac{1}{3}$.
We have $2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{2}{3}$.
Let us subtract both sides with ‘1’.
We have \[2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)-1=\dfrac{2}{3}-1\].
We have $2{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)-1=\dfrac{-1}{3}$.
We know that $\cos \left( 2\theta \right)=2{{\cos }^{2}}\left( \theta \right)-1$.
We have $\cos \left( 2\times \dfrac{A-B}{2} \right)=\dfrac{-1}{3}$.
We have $\cos \left( A-B \right)=\dfrac{-1}{3}$.
$\therefore$ The value of $\cos \left( A-B \right)=\dfrac{-1}{3}$ ------(3).
Now we need to find the value of $\left| \cos A-\cos B \right|$ to check the remaining options.
We have $\left| \cos A-\cos B \right|$ and from trigonometric transformations, we have $\cos A-\cos B=-2.\sin \left( \dfrac{A+B}{2} \right).\sin \left( \dfrac{A-B}{2} \right)$.
We have $\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{A+B}{2} \right).\sin \left( \dfrac{A-B}{2} \right) \right|$ -------(4).
Let us find the value of $\sin \left( \dfrac{A-B}{2} \right)$ first. From equation (2), we have got ${{\cos }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{1}{3}$.
For any value of $\theta $, we have ${{\sin }^{2}}\left( \theta \right)=1-{{\cos }^{2}}\left( \theta \right)$.
So, we have ${{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=1-{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)$.
${{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=1-\dfrac{1}{3}$.
${{\sin }^{2}}\left( \dfrac{A-B}{2} \right)=\dfrac{2}{3}$.
$\sin \left( \dfrac{A-B}{2} \right)=\sqrt{\dfrac{2}{3}}$.
We use $\sin \left( \dfrac{A-B}{2} \right)=\sqrt{\dfrac{2}{3}}$ and $A+B=\dfrac{\pi }{3}$ in equation (4).
$\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{\dfrac{\pi }{3}}{2} \right).\sqrt{\dfrac{2}{3}} \right|$.
$\left| \cos A-\cos B \right|=\left| -2.\sin \left( \dfrac{\pi }{6} \right).\sqrt{\dfrac{2}{3}} \right|$.
We know that $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$.
$\left| \cos A-\cos B \right|=\left| -2.\left( \dfrac{1}{2} \right).\left( \sqrt{\dfrac{2}{3}} \right) \right|$.
$\left| \cos A-\cos B \right|=\left| -\sqrt{\dfrac{2}{3}} \right|$.
We know that $\left| x \right|>0$.
So, we get $\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}}$ -------(5).
From equations (3) and (5), we got $\cos \left( A-B \right)=\dfrac{-1}{3}$ and $\left| \cos A-\cos B \right|=\sqrt{\dfrac{2}{3}}$.
$\therefore$ The correct options are (b) and (c).
Note: Whenever we get problems that involve the sum of two trigonometric functions each of different angles, we start by using trigonometric transformation. We should use trigonometric identities and conversions of $\theta $ to $2\theta $, wherever required throughout the problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

