
If the function is given as $f\left( x \right)=\left\{ \begin{matrix}
-x-\dfrac{\pi }{2}, & \forall x\le -\dfrac{\pi }{2} \\
-\cos x, & \forall -\dfrac{\pi }{2} < x\le 0 \\
x-1 & \forall 0 < x\le 1 \\
\ln x, & \forall x > 1 \\
\end{matrix} \right.$, then
A. $f\left( x \right)$ is continuous at $x=-\dfrac{\pi }{2}$
B. $f\left( x \right)$ is not differentiable at $x=0$
C. $f\left( x \right)$ is differentiable at $x=1$
D. $f\left( x \right)$ is differentiable at $x=-\dfrac{3}{2}$
Answer
543.3k+ views
Hint: We have to find the continuity and the differentiability of the given piecewise function at certain points. We use the points and use their close values to find the different functions that will be available to operate. We take the final conclusion depending on the equality of the theorems $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right)$ for continuity and $\displaystyle \lim_{x \to {{a}^{+}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}{{f}^{'}}\left( x \right)$ for differentiability.
Complete step by step solution:
We have to show the continuity and the differentiability of the given function at certain points.
For the function if the condition $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right)$ satisfies then it will continuous.
At $x=-\dfrac{\pi }{2}$, we take
\[\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{-}}}f\left( x \right)=f\left( -\dfrac{\pi }{2} \right)={{\left[ -x-\dfrac{\pi }{2} \right]}_{x=\left( -\dfrac{\pi }{2} \right)}}=0\]
$\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{+}}}f\left( x \right)={{\left[ -\cos x \right]}_{x=\left( -\dfrac{\pi }{2} \right)}}=0$
Therefore, $f\left( x \right)$ is continuous at $x=-\dfrac{\pi }{2}$ as \[\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{-}}}f\left( x \right)=f\left( -\dfrac{\pi }{2} \right)=\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{+}}}f\left( x \right)=0\].
For the function if the condition $\displaystyle \lim_{x \to {{a}^{+}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}{{f}^{'}}\left( x \right)$ satisfies then it will differentiable.
Here ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]$.
We check differentiability at three different points of $x=-\dfrac{3}{2},0,1$.
At $x=-\dfrac{3}{2}$, we take
\[\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{-}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{+}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( -x-\dfrac{3 }{2} \right) \right]}_{x=\left( -\dfrac{3 }{2} \right)}}=-1\]
Therefore, $f\left( x \right)$ is differentiable at $x=-\dfrac{3}{2}$ as \[\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{-}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{+}}}{{f}^{'}}\left( x \right)=-1\].
At $x=0$, we take
\[\displaystyle \lim_{x \to {{0}^{-}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( -\cos x \right) \right]}_{x=0}}={{\left[ \sin x \right]}_{x=0}}=0\]
\[\displaystyle \lim_{x \to {{0}^{+}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x-1 \right) \right]}_{x=0}}=1\]
Therefore, $f\left( x \right)$ is not differentiable at $x=0$ as \[\displaystyle \lim_{x \to {{0}^{-}}}{{f}^{'}}\left( x \right)\ne \displaystyle \lim_{x \to {{0}^{+}}}{{f}^{'}}\left( x \right)\].
At $x=1$, we take
\[\displaystyle \lim_{x \to {{1}^{-}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x-1 \right) \right]}_{x=1}}=1\]
\[\displaystyle \lim_{x \to {{1}^{+}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( \ln x \right) \right]}_{x=1}}={{\left[ \dfrac{1}{x} \right]}_{x=1}}=1\]
Therefore, $f\left( x \right)$ is differentiable at $x=1$ as \[\displaystyle \lim_{x \to {{1}^{-}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{1}^{+}}}{{f}^{'}}\left( x \right)=1\].
Note: This type of differentiability checking is called differentiability of piecewise function. A piecewise function is differentiable at a point if both of the pieces have derivatives at that point, and the derivatives are equal at that point.
Complete step by step solution:
We have to show the continuity and the differentiability of the given function at certain points.
For the function if the condition $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right)$ satisfies then it will continuous.
At $x=-\dfrac{\pi }{2}$, we take
\[\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{-}}}f\left( x \right)=f\left( -\dfrac{\pi }{2} \right)={{\left[ -x-\dfrac{\pi }{2} \right]}_{x=\left( -\dfrac{\pi }{2} \right)}}=0\]
$\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{+}}}f\left( x \right)={{\left[ -\cos x \right]}_{x=\left( -\dfrac{\pi }{2} \right)}}=0$
Therefore, $f\left( x \right)$ is continuous at $x=-\dfrac{\pi }{2}$ as \[\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{-}}}f\left( x \right)=f\left( -\dfrac{\pi }{2} \right)=\displaystyle \lim_{x \to {{\left( -\dfrac{\pi }{2} \right)}^{+}}}f\left( x \right)=0\].
For the function if the condition $\displaystyle \lim_{x \to {{a}^{+}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}{{f}^{'}}\left( x \right)$ satisfies then it will differentiable.
Here ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]$.
We check differentiability at three different points of $x=-\dfrac{3}{2},0,1$.
At $x=-\dfrac{3}{2}$, we take
\[\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{-}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{+}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( -x-\dfrac{3 }{2} \right) \right]}_{x=\left( -\dfrac{3 }{2} \right)}}=-1\]
Therefore, $f\left( x \right)$ is differentiable at $x=-\dfrac{3}{2}$ as \[\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{-}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{\left( -\dfrac{3 }{2} \right)}^{+}}}{{f}^{'}}\left( x \right)=-1\].
At $x=0$, we take
\[\displaystyle \lim_{x \to {{0}^{-}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( -\cos x \right) \right]}_{x=0}}={{\left[ \sin x \right]}_{x=0}}=0\]
\[\displaystyle \lim_{x \to {{0}^{+}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x-1 \right) \right]}_{x=0}}=1\]
Therefore, $f\left( x \right)$ is not differentiable at $x=0$ as \[\displaystyle \lim_{x \to {{0}^{-}}}{{f}^{'}}\left( x \right)\ne \displaystyle \lim_{x \to {{0}^{+}}}{{f}^{'}}\left( x \right)\].
At $x=1$, we take
\[\displaystyle \lim_{x \to {{1}^{-}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x-1 \right) \right]}_{x=1}}=1\]
\[\displaystyle \lim_{x \to {{1}^{+}}}{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( \ln x \right) \right]}_{x=1}}={{\left[ \dfrac{1}{x} \right]}_{x=1}}=1\]
Therefore, $f\left( x \right)$ is differentiable at $x=1$ as \[\displaystyle \lim_{x \to {{1}^{-}}}{{f}^{'}}\left( x \right)=\displaystyle \lim_{x \to {{1}^{+}}}{{f}^{'}}\left( x \right)=1\].
Note: This type of differentiability checking is called differentiability of piecewise function. A piecewise function is differentiable at a point if both of the pieces have derivatives at that point, and the derivatives are equal at that point.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

