
If the function \[f(x)=\left\{ {{(\cos x)}^{\dfrac{1}{x}}},x\ne 0 \right\}\]is continuous at x=0, then the value of k is \[f(x)=\]\[\left\{ k,x=0 \right\}\]
A. 8
B. 1
C. -1
D. None of the above
Answer
611.7k+ views
Hint: For this type of function it is given continuous at x equal to zero, that means it is continuous at left hand limit and right hand limit. By finding the limits, left hand limit and right hand limit we get the value of k.
Complete step-by-step solution -
As \[f(x)\]is continuous at \[x=0\],
\[f\left( {{0}^{-}} \right)=f\left( 0 \right)=f\left( {{0}^{+}} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[f(x)=\left\{ {{(\cos x)}^{\dfrac{1}{x}}},x\ne 0 \right\}\]
\[\underset{x\to 0}{\mathop{\lim }}\,{{(\cos x)}^{\dfrac{1}{x}}}\]
If we substitute x=0 in the following we will get the value of limit as follows,
\[={{1}^{\infty }}\]
\[{{1}^{\infty }}\]is an indeterminate form we cannot find the value of x for this \[{{1}^{\infty }}\]indeterminate form there is a separate procedure
\[\underset{x\to a}{\mathop{\lim }}\,f(x)=1\] and \[\underset{x\to a}{\mathop{\lim }}\,g(x)=\infty \] then the value of limit is
\[\underset{x\to a}{\mathop{\lim }}\,f{{\left( x \right)}^{g\left( x \right)}}={{e}^{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\left[ f(x)-1 \right]}}\]
So, in the given problem \[f(x)=\cos x\] and \[g(x)=\dfrac{1}{x}\]. . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the corresponding values in the formula we will get,
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ \cos x-1 \right]}}\]. . . . . . . . . . . . . . . . . . . . . .. . (3)
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ 2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \right]}}\]
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ -2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \right]\times \dfrac{\dfrac{{{x}^{2}}}{4}}{\dfrac{{{x}^{2}}}{4}}}}\]
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ -1 \right]\times \dfrac{{{x}^{^{2}}}}{2}}}\]
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\left[ -1 \right]\times \dfrac{x}{2}}}\]
\[={{e}^{0\times -1}}\]
\[=1\]
Therefore, the given function is continuous when\[\underset{x\to 0}{\mathop{\lim }}\,{{(\cos x)}^{\dfrac{1}{x}}}\]=k
We obtained the values as 1 so the value of k=1
K=1
So the correct option is option (B)
Note: In evaluating the limits of form \[{{1}^{\infty }}\].its limit values cannot be calculated directly and can be calculated by the formula given as if \[\underset{x\to a}{\mathop{\lim }}\,f(x)=1\]and \[\underset{x\to a}{\mathop{\lim }}\,g(x)=\infty \]then \[\underset{x\to a}{\mathop{\lim }}\,f{{\left( x \right)}^{g\left( x \right)}}={{e}^{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\left[ f(x)-1 \right]}}\]. Note that this formula is only applicable for limits of \[{{1}^{\infty }}\]which is indeterminate form and we know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\].
Complete step-by-step solution -
As \[f(x)\]is continuous at \[x=0\],
\[f\left( {{0}^{-}} \right)=f\left( 0 \right)=f\left( {{0}^{+}} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[f(x)=\left\{ {{(\cos x)}^{\dfrac{1}{x}}},x\ne 0 \right\}\]
\[\underset{x\to 0}{\mathop{\lim }}\,{{(\cos x)}^{\dfrac{1}{x}}}\]
If we substitute x=0 in the following we will get the value of limit as follows,
\[={{1}^{\infty }}\]
\[{{1}^{\infty }}\]is an indeterminate form we cannot find the value of x for this \[{{1}^{\infty }}\]indeterminate form there is a separate procedure
\[\underset{x\to a}{\mathop{\lim }}\,f(x)=1\] and \[\underset{x\to a}{\mathop{\lim }}\,g(x)=\infty \] then the value of limit is
\[\underset{x\to a}{\mathop{\lim }}\,f{{\left( x \right)}^{g\left( x \right)}}={{e}^{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\left[ f(x)-1 \right]}}\]
So, in the given problem \[f(x)=\cos x\] and \[g(x)=\dfrac{1}{x}\]. . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the corresponding values in the formula we will get,
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ \cos x-1 \right]}}\]. . . . . . . . . . . . . . . . . . . . . .. . (3)
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ 2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \right]}}\]
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ -2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \right]\times \dfrac{\dfrac{{{x}^{2}}}{4}}{\dfrac{{{x}^{2}}}{4}}}}\]
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{x}\left[ -1 \right]\times \dfrac{{{x}^{^{2}}}}{2}}}\]
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\left[ -1 \right]\times \dfrac{x}{2}}}\]
\[={{e}^{0\times -1}}\]
\[=1\]
Therefore, the given function is continuous when\[\underset{x\to 0}{\mathop{\lim }}\,{{(\cos x)}^{\dfrac{1}{x}}}\]=k
We obtained the values as 1 so the value of k=1
K=1
So the correct option is option (B)
Note: In evaluating the limits of form \[{{1}^{\infty }}\].its limit values cannot be calculated directly and can be calculated by the formula given as if \[\underset{x\to a}{\mathop{\lim }}\,f(x)=1\]and \[\underset{x\to a}{\mathop{\lim }}\,g(x)=\infty \]then \[\underset{x\to a}{\mathop{\lim }}\,f{{\left( x \right)}^{g\left( x \right)}}={{e}^{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\left[ f(x)-1 \right]}}\]. Note that this formula is only applicable for limits of \[{{1}^{\infty }}\]which is indeterminate form and we know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

