
If the function f($\theta$) is given as $f\left( \theta \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right],f\left( \theta \right).f\left( \phi \right)=$
A. $f\left( \theta +\phi \right)$
B. $f\left( \theta .\phi \right)$
C. $f\left( \theta \right)+f\left( \phi \right)$
D. $f\left( \theta -\phi \right)$
Answer
560.7k+ views
Hint: First of all find $f\left( \phi \right)$ by replacing $\theta $ with $\phi $ in the given matrix. Multiply the matrices $f\left( \theta \right)$ and $f\left( \phi \right)$ by using the general rule of multiplication of matrix given as : $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$. Now, use these four trigonometric identities to simplify the expression.
$\begin{align}
& \left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) \\
& \left( ii \right)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) \\
& \left( iii \right)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right) \\
& \left( iv \right)\sin A\cos B-\cos A\sin B=\sin \left( A-B \right) \\
\end{align}$
Complete step by step answer:
Here, we have been provided with a matrix :
$f\left( \theta \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]$
We have to find the value of $f\left( \theta \right).f\left( \phi \right)$. To do this first we have to find the matrix $f\left( \phi \right)$.
Now, by replacing $\theta $ with $\phi $ in the matrix $f\left( \theta \right)$, we get,
$f\left( \phi \right)=\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right]$
Now, when we have two matrices, $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$, their multiplication is given as :
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
Therefore, by applying the above procedure, we get,
$\begin{align}
& f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right].\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi +\sin \theta \left( -\sin \phi \right) & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\sin \theta \cos \phi +\cos \theta \left( -\sin \phi \right) & -\sin \theta \sin \phi +\cos \theta \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi -\sin \theta \sin \phi & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\left( \sin \theta \cos \phi +\cos \theta \sin \phi \right) & \cos \theta \cos \phi -\sin \theta \sin \phi \\
\end{matrix} \right] \\
\end{align}$
Now applying the following trigonometric identities in corresponding elements of matrix, we get,
$\left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$, in element ${{a}_{11}}$ and ${{a}_{22}}$
$\left( ii \right)\cos A\sin B+\sin A\cos B=\sin \left( A+B \right)$, in element ${{a}_{12}}$ and ${{a}_{21}}$
$\Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \left( \theta +\phi \right) & \sin \left( \theta +\phi \right) \\
-\sin \left( \theta +\phi \right) & \cos \left( \theta +\phi \right) \\
\end{matrix} \right]$
Clearly, we can see that the matrix obtained in R.H.S can be written as $f\left( \theta +\phi \right)$.
Therefore, $f\left( \theta \right).f\left( \phi \right)=f\left( \theta +\phi \right)$.
So, the correct answer is “Option A”.
Note: One may note that there is an easy method to find the correct option. We can assign some particular values to $\theta $ and $\phi $ like ${{0}^{\circ }},{{30}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$ etc and find the value of $f\left( \theta \right).f\left( \phi \right)$. Now, we will check the options one by one by substituting the same particular value of $\theta $ and $\phi $ in them. But remember that this method can only be applied if the options are provided, otherwise you have to use the general method of multiplication of two matrices as used in the above solution.
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$. Now, use these four trigonometric identities to simplify the expression.
$\begin{align}
& \left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) \\
& \left( ii \right)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) \\
& \left( iii \right)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right) \\
& \left( iv \right)\sin A\cos B-\cos A\sin B=\sin \left( A-B \right) \\
\end{align}$
Complete step by step answer:
Here, we have been provided with a matrix :
$f\left( \theta \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]$
We have to find the value of $f\left( \theta \right).f\left( \phi \right)$. To do this first we have to find the matrix $f\left( \phi \right)$.
Now, by replacing $\theta $ with $\phi $ in the matrix $f\left( \theta \right)$, we get,
$f\left( \phi \right)=\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right]$
Now, when we have two matrices, $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$, their multiplication is given as :
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
Therefore, by applying the above procedure, we get,
$\begin{align}
& f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right].\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi +\sin \theta \left( -\sin \phi \right) & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\sin \theta \cos \phi +\cos \theta \left( -\sin \phi \right) & -\sin \theta \sin \phi +\cos \theta \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi -\sin \theta \sin \phi & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\left( \sin \theta \cos \phi +\cos \theta \sin \phi \right) & \cos \theta \cos \phi -\sin \theta \sin \phi \\
\end{matrix} \right] \\
\end{align}$
Now applying the following trigonometric identities in corresponding elements of matrix, we get,
$\left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$, in element ${{a}_{11}}$ and ${{a}_{22}}$
$\left( ii \right)\cos A\sin B+\sin A\cos B=\sin \left( A+B \right)$, in element ${{a}_{12}}$ and ${{a}_{21}}$
$\Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \left( \theta +\phi \right) & \sin \left( \theta +\phi \right) \\
-\sin \left( \theta +\phi \right) & \cos \left( \theta +\phi \right) \\
\end{matrix} \right]$
Clearly, we can see that the matrix obtained in R.H.S can be written as $f\left( \theta +\phi \right)$.
Therefore, $f\left( \theta \right).f\left( \phi \right)=f\left( \theta +\phi \right)$.
So, the correct answer is “Option A”.
Note: One may note that there is an easy method to find the correct option. We can assign some particular values to $\theta $ and $\phi $ like ${{0}^{\circ }},{{30}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$ etc and find the value of $f\left( \theta \right).f\left( \phi \right)$. Now, we will check the options one by one by substituting the same particular value of $\theta $ and $\phi $ in them. But remember that this method can only be applied if the options are provided, otherwise you have to use the general method of multiplication of two matrices as used in the above solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

