
If the function f($\theta$) is given as $f\left( \theta \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right],f\left( \theta \right).f\left( \phi \right)=$
A. $f\left( \theta +\phi \right)$
B. $f\left( \theta .\phi \right)$
C. $f\left( \theta \right)+f\left( \phi \right)$
D. $f\left( \theta -\phi \right)$
Answer
516.3k+ views
Hint: First of all find $f\left( \phi \right)$ by replacing $\theta $ with $\phi $ in the given matrix. Multiply the matrices $f\left( \theta \right)$ and $f\left( \phi \right)$ by using the general rule of multiplication of matrix given as : $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$. Now, use these four trigonometric identities to simplify the expression.
$\begin{align}
& \left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) \\
& \left( ii \right)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) \\
& \left( iii \right)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right) \\
& \left( iv \right)\sin A\cos B-\cos A\sin B=\sin \left( A-B \right) \\
\end{align}$
Complete step by step answer:
Here, we have been provided with a matrix :
$f\left( \theta \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]$
We have to find the value of $f\left( \theta \right).f\left( \phi \right)$. To do this first we have to find the matrix $f\left( \phi \right)$.
Now, by replacing $\theta $ with $\phi $ in the matrix $f\left( \theta \right)$, we get,
$f\left( \phi \right)=\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right]$
Now, when we have two matrices, $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$, their multiplication is given as :
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
Therefore, by applying the above procedure, we get,
$\begin{align}
& f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right].\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi +\sin \theta \left( -\sin \phi \right) & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\sin \theta \cos \phi +\cos \theta \left( -\sin \phi \right) & -\sin \theta \sin \phi +\cos \theta \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi -\sin \theta \sin \phi & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\left( \sin \theta \cos \phi +\cos \theta \sin \phi \right) & \cos \theta \cos \phi -\sin \theta \sin \phi \\
\end{matrix} \right] \\
\end{align}$
Now applying the following trigonometric identities in corresponding elements of matrix, we get,
$\left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$, in element ${{a}_{11}}$ and ${{a}_{22}}$
$\left( ii \right)\cos A\sin B+\sin A\cos B=\sin \left( A+B \right)$, in element ${{a}_{12}}$ and ${{a}_{21}}$
$\Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \left( \theta +\phi \right) & \sin \left( \theta +\phi \right) \\
-\sin \left( \theta +\phi \right) & \cos \left( \theta +\phi \right) \\
\end{matrix} \right]$
Clearly, we can see that the matrix obtained in R.H.S can be written as $f\left( \theta +\phi \right)$.
Therefore, $f\left( \theta \right).f\left( \phi \right)=f\left( \theta +\phi \right)$.
So, the correct answer is “Option A”.
Note: One may note that there is an easy method to find the correct option. We can assign some particular values to $\theta $ and $\phi $ like ${{0}^{\circ }},{{30}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$ etc and find the value of $f\left( \theta \right).f\left( \phi \right)$. Now, we will check the options one by one by substituting the same particular value of $\theta $ and $\phi $ in them. But remember that this method can only be applied if the options are provided, otherwise you have to use the general method of multiplication of two matrices as used in the above solution.
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$. Now, use these four trigonometric identities to simplify the expression.
$\begin{align}
& \left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right) \\
& \left( ii \right)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right) \\
& \left( iii \right)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right) \\
& \left( iv \right)\sin A\cos B-\cos A\sin B=\sin \left( A-B \right) \\
\end{align}$
Complete step by step answer:
Here, we have been provided with a matrix :
$f\left( \theta \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]$
We have to find the value of $f\left( \theta \right).f\left( \phi \right)$. To do this first we have to find the matrix $f\left( \phi \right)$.
Now, by replacing $\theta $ with $\phi $ in the matrix $f\left( \theta \right)$, we get,
$f\left( \phi \right)=\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right]$
Now, when we have two matrices, $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]$, their multiplication is given as :
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]$
Therefore, by applying the above procedure, we get,
$\begin{align}
& f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right].\left[ \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi +\sin \theta \left( -\sin \phi \right) & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\sin \theta \cos \phi +\cos \theta \left( -\sin \phi \right) & -\sin \theta \sin \phi +\cos \theta \cos \phi \\
\end{matrix} \right] \\
& \Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \theta \cos \phi -\sin \theta \sin \phi & \cos \theta \sin \phi +\sin \theta \cos \phi \\
-\left( \sin \theta \cos \phi +\cos \theta \sin \phi \right) & \cos \theta \cos \phi -\sin \theta \sin \phi \\
\end{matrix} \right] \\
\end{align}$
Now applying the following trigonometric identities in corresponding elements of matrix, we get,
$\left( i \right)\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$, in element ${{a}_{11}}$ and ${{a}_{22}}$
$\left( ii \right)\cos A\sin B+\sin A\cos B=\sin \left( A+B \right)$, in element ${{a}_{12}}$ and ${{a}_{21}}$
$\Rightarrow f\left( \theta \right).f\left( \phi \right)=\left[ \begin{matrix}
\cos \left( \theta +\phi \right) & \sin \left( \theta +\phi \right) \\
-\sin \left( \theta +\phi \right) & \cos \left( \theta +\phi \right) \\
\end{matrix} \right]$
Clearly, we can see that the matrix obtained in R.H.S can be written as $f\left( \theta +\phi \right)$.
Therefore, $f\left( \theta \right).f\left( \phi \right)=f\left( \theta +\phi \right)$.
So, the correct answer is “Option A”.
Note: One may note that there is an easy method to find the correct option. We can assign some particular values to $\theta $ and $\phi $ like ${{0}^{\circ }},{{30}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}$ etc and find the value of $f\left( \theta \right).f\left( \phi \right)$. Now, we will check the options one by one by substituting the same particular value of $\theta $ and $\phi $ in them. But remember that this method can only be applied if the options are provided, otherwise you have to use the general method of multiplication of two matrices as used in the above solution.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
