Answer
Verified
438.3k+ views
Hint: We will first find the differentiation of the given function as we have given that the function strictly increases in the interval. Form that condition we will find the range of $x$ and we equate the result range with the given range to find the values of $\lambda ,\mu $ from that values we can find the required value of $-500\cos \left( \mu -\lambda \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below
Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below
Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE