
If the function, \[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16},for x\ne 2 \\
A,for x = 2 \\
\end{matrix} \right.\], is continuous at x = 2, then A =
(a) 2
(b) \[\dfrac{1}{2}\]
(c) \[\dfrac{1}{4}\]
(d) 0
Answer
579k+ views
Hint: Apply L – Hospital’s Rule to find the value of left hand limit = right hand limit = \[\underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\] and substitute this value equal to \[f\left( 2 \right)=A\]. Use the theorem that, “if at x = a \[\dfrac{f\left( x \right)}{g\left( x \right)}\] is of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] form then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\]”.
Complete step by step answer:
We have been provided that, \[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16},forx\ne 2 \\
A,forx\ne 2 \\
\end{matrix} \right.\], is continuous at x = 2 and we have to find the value of A.
Let us see the conditions if a function is continuous at some point x = a.
Now, if a function is continuous at x = a, then the values of left hand side limit (L.H.L), right hand limit (R.H.L) and f (a) must be the same. Mathematically,
\[\Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right)\]
In the above question, we have been given that: - x = 2, f (x) = A and at \[x\ne 2\], \[f\left( x \right)=\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\]. So, mathematically,
\[\Rightarrow f\left( 2 \right)=A\] - (i)
\[\Rightarrow \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,=\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\] - (ii)
So, let us find the value of relation (ii),
\[\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\], here when we will substitute x = 2 in \[\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\] then it will convert into \[\dfrac{0}{0}\] form. So, L – Hospital’s Rule can be applied here.
L – Hospital’s Rule states that, “if a function is of the form \[\dfrac{f\left( x \right)}{g\left( x \right)}\] and at x = a it is of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\]”, where \[f'\left( x \right)\] and \[g'\left( x \right)\] are the derivatives of \[f\left( x \right)\] and \[g\left( x \right)\] respectively.
So, considering \[{{2}^{x+2}}-16=f\left( x \right)\] and \[{{4}^{x}}-16=g\left( x \right)\], we get,
\[\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{\dfrac{d\left[ {{2}^{x+2}}-16 \right]}{dx}}{\dfrac{d\left[ {{4}^{x}}-16 \right]}{dx}}\]
We know that, \[\dfrac{d\left[ {{a}^{x}} \right]}{dx}={{a}^{x}}\log a\] and derivative of constant is 0. Therefore, we have,
\[\begin{align}
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2-0}{{{4}^{x}}\log 4-0} \\
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{4}^{x}}\log 4} \\
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{2}^{2x}}\left( \log {{2}^{2}} \right)} \\
\end{align}\]
Applying the formula: - \[\log {{a}^{m}}=m\log a\], we get,
\[\begin{align}
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{2}^{2x}}\times 2\log 2} \\
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}}{{{2}^{2x}}\times 2} \\
\end{align}\]
Applying the formula: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\], we get,
\[\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\underset{x\to 2}{\mathop{\lim }}\,{{2}^{\left( x+2 \right)-\left( 1+2x \right)}}=\underset{x\to 2}{\mathop{\lim }}\,{{2}^{1-x}}={{2}^{1-2}}={{2}^{-1}}=\dfrac{1}{2}\]
Since, the function is continuous, therefore,
\[\begin{align}
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=f\left( 2 \right) \\
& \Rightarrow {{2}^{-1}}=A \\
& \Rightarrow A=\dfrac{1}{{{2}^{1}}} \\
& \Rightarrow A=\dfrac{1}{2} \\
\end{align}\]
So, the correct answer is “Option B”.
Note: One may note that we can also evaluate the limit without using L – Hospital Rule. We can divide the numerator and denominator with 16 and convert the function in the form \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{a}^{x}}-1}{x}\] whose solution is \[{{\log }_{e}}a\]. But we have applied L – Hospital’s Rule because it is easier to solve the limit problem with this theorem. The most important thing is that L – Hospital’s Rule is applicable for limits of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\].
Complete step by step answer:
We have been provided that, \[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16},forx\ne 2 \\
A,forx\ne 2 \\
\end{matrix} \right.\], is continuous at x = 2 and we have to find the value of A.
Let us see the conditions if a function is continuous at some point x = a.
Now, if a function is continuous at x = a, then the values of left hand side limit (L.H.L), right hand limit (R.H.L) and f (a) must be the same. Mathematically,
\[\Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right)\]
In the above question, we have been given that: - x = 2, f (x) = A and at \[x\ne 2\], \[f\left( x \right)=\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\]. So, mathematically,
\[\Rightarrow f\left( 2 \right)=A\] - (i)
\[\Rightarrow \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,=\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\] - (ii)
So, let us find the value of relation (ii),
\[\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\], here when we will substitute x = 2 in \[\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}\] then it will convert into \[\dfrac{0}{0}\] form. So, L – Hospital’s Rule can be applied here.
L – Hospital’s Rule states that, “if a function is of the form \[\dfrac{f\left( x \right)}{g\left( x \right)}\] and at x = a it is of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\]”, where \[f'\left( x \right)\] and \[g'\left( x \right)\] are the derivatives of \[f\left( x \right)\] and \[g\left( x \right)\] respectively.
So, considering \[{{2}^{x+2}}-16=f\left( x \right)\] and \[{{4}^{x}}-16=g\left( x \right)\], we get,
\[\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\underset{x\to 2}{\mathop{\lim }}\,\dfrac{\dfrac{d\left[ {{2}^{x+2}}-16 \right]}{dx}}{\dfrac{d\left[ {{4}^{x}}-16 \right]}{dx}}\]
We know that, \[\dfrac{d\left[ {{a}^{x}} \right]}{dx}={{a}^{x}}\log a\] and derivative of constant is 0. Therefore, we have,
\[\begin{align}
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2-0}{{{4}^{x}}\log 4-0} \\
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{4}^{x}}\log 4} \\
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{2}^{2x}}\left( \log {{2}^{2}} \right)} \\
\end{align}\]
Applying the formula: - \[\log {{a}^{m}}=m\log a\], we get,
\[\begin{align}
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}\log 2}{{{2}^{2x}}\times 2\log 2} \\
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\dfrac{{{2}^{x+2}}}{{{2}^{2x}}\times 2} \\
\end{align}\]
Applying the formula: - \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\], we get,
\[\Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=\underset{x\to 2}{\mathop{\lim }}\,{{2}^{\left( x+2 \right)-\left( 1+2x \right)}}=\underset{x\to 2}{\mathop{\lim }}\,{{2}^{1-x}}={{2}^{1-2}}={{2}^{-1}}=\dfrac{1}{2}\]
Since, the function is continuous, therefore,
\[\begin{align}
& \Rightarrow \underset{x\to 2}{\mathop{\lim }}\,\dfrac{{{2}^{x+2}}-16}{{{4}^{x}}-16}=f\left( 2 \right) \\
& \Rightarrow {{2}^{-1}}=A \\
& \Rightarrow A=\dfrac{1}{{{2}^{1}}} \\
& \Rightarrow A=\dfrac{1}{2} \\
\end{align}\]
So, the correct answer is “Option B”.
Note: One may note that we can also evaluate the limit without using L – Hospital Rule. We can divide the numerator and denominator with 16 and convert the function in the form \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{a}^{x}}-1}{x}\] whose solution is \[{{\log }_{e}}a\]. But we have applied L – Hospital’s Rule because it is easier to solve the limit problem with this theorem. The most important thing is that L – Hospital’s Rule is applicable for limits of the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

