
If the function $\text{F}\left( x \right)=2{{x}^{3}}-9a{{x}^{2}}+12{{a}^{2}}x+1$ has a local maximum at $x={{x}_{1}}$ and a local maximum at $x={{x}_{2}}$ such that ${{x}_{2}}=x_{1}^{2}$ then the value of ‘a’ equals.
A). 0
B). ${}^{1}/{}_{2}$.
C). 2
D). Either (a) or (c)
Answer
589.8k+ views
Hint: Find the maximum and minima at the given function by differentiating and double differentiating it. Then put the values in the given relation ${{x}_{2}}=x_{1}^{2}$ to find the value at a.
Complete step by step solution: Given, $\text{f}\left( x \right)=2{{x}^{3}}-9a{{x}^{2}}+12{{a}^{2}}x+1$
Differentiating with respect to $x.$
$\text{f }\!\!'\!\!\text{ }\left( x \right)=2.\dfrac{d}{dx}\left( {{x}^{3}} \right)-\dfrac{d}{dx}\left( 9a{{x}^{2}} \right)+\dfrac{d}{dx}\left( 12{{a}^{2}}x \right)+\dfrac{d}{dx}\left( 1 \right)$
Using the formula $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{(n-1)}},\text{we}\ \text{get}$
$\Rightarrow \ \text{f }\!\!'\!\!\text{ }\left( x \right)=2\left( 3{{x}^{2}} \right)-9a\left( 2x \right)+12{{a}^{2}}\left( 1 \right)+0$
$\Rightarrow \ \text{f }\!\!'\!\!\text{ }\left( x \right)=6{{x}^{2}}-18ax+12{{a}^{2}}$
Now again differentiating with respect to $x$.
$\Rightarrow \ \text{f}''\left( x \right)=\dfrac{d}{dx}\left( 6{{x}^{2}} \right)-\dfrac{d}{dx}\left( 18ax \right)+\dfrac{d}{dx}\left( 12{{a}^{2}} \right)$
$\Rightarrow \text{f}''\ \left( x \right)=12x-18a$
$\therefore \ \text{f}''\ \left( x \right)=12x-18a$
For finding maxima/minima condition is
\[\text{f }\!\!'\!\!\text{ }\left( x \right)=0\]
$\Rightarrow \ 6{{x}^{2}}-18ax+12{{a}^{2}}=0$
Now splitting middle $+am$
$\Rightarrow \ 6\left( {{x}^{2}}-3ax+2{{a}^{2}} \right)=0$
$\Rightarrow \ {{x}^{2}}-3ax+2{{a}^{2}}=0$
$\Rightarrow \ {{x}^{2}}-ax-2ax+2{{a}^{2}}=0$
$\Rightarrow \ x\left( x-a \right)-2a\left( x-a \right)=0$
Taking $\left( x-a \right)$ common
$\Rightarrow \ \left( x-a \right)\ \left( x-2a \right)=0$
$\Rightarrow \ x=a\ or\ x=2a$
For finding which one is maxima and which one is minima,
$\text{f}''\left( a \right)=12\left( a \right)-180=6a<0$
Therefore $\text{f}\left( x \right)$ is maxima at $x=a$
$\text{f}''\left( 2a \right)=12\left( 2a \right)-180$
$24a-18a=6a>0$
Therefore $\text{f}\left( x \right)$ is minimum at $x=2a$
Now from question we know that at $x={{x}_{1}}\ ,\text{f}\left( x \right)$ has 0 local maximum
So, ${{x}_{1}}=a$
And at $x={{x}_{2}}\ \text{f}\left( x \right)$ has a local minima
So, ${{x}_{2}}=2a$
It is given,
${{x}_{2}}=x_{1}^{2}$
$\Rightarrow \ 2a={{a}^{2}}$
$\Rightarrow \ {{a}^{2}}-2a=0$
$\Rightarrow \ a\left( a-2 \right)=0$
$\Rightarrow \ a=0\ or\ a=2$
$a\ne{0},$ since in the question it is said that $a>0$
Therefore $a=2$ answer.
Note: A local maximum point an a function ‘s a point $\left( x,y \right)$ on the graph of the function whose y coordinate is large than all then co-coordinate on the graph at points “close to” $\left( x,y \right)$.
Similarly$\left( x,y \right)$s is a local minimum point if. It has locally the smallest y coordinate.
Complete step by step solution: Given, $\text{f}\left( x \right)=2{{x}^{3}}-9a{{x}^{2}}+12{{a}^{2}}x+1$
Differentiating with respect to $x.$
$\text{f }\!\!'\!\!\text{ }\left( x \right)=2.\dfrac{d}{dx}\left( {{x}^{3}} \right)-\dfrac{d}{dx}\left( 9a{{x}^{2}} \right)+\dfrac{d}{dx}\left( 12{{a}^{2}}x \right)+\dfrac{d}{dx}\left( 1 \right)$
Using the formula $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{(n-1)}},\text{we}\ \text{get}$
$\Rightarrow \ \text{f }\!\!'\!\!\text{ }\left( x \right)=2\left( 3{{x}^{2}} \right)-9a\left( 2x \right)+12{{a}^{2}}\left( 1 \right)+0$
$\Rightarrow \ \text{f }\!\!'\!\!\text{ }\left( x \right)=6{{x}^{2}}-18ax+12{{a}^{2}}$
Now again differentiating with respect to $x$.
$\Rightarrow \ \text{f}''\left( x \right)=\dfrac{d}{dx}\left( 6{{x}^{2}} \right)-\dfrac{d}{dx}\left( 18ax \right)+\dfrac{d}{dx}\left( 12{{a}^{2}} \right)$
$\Rightarrow \text{f}''\ \left( x \right)=12x-18a$
$\therefore \ \text{f}''\ \left( x \right)=12x-18a$
For finding maxima/minima condition is
\[\text{f }\!\!'\!\!\text{ }\left( x \right)=0\]
$\Rightarrow \ 6{{x}^{2}}-18ax+12{{a}^{2}}=0$
Now splitting middle $+am$
$\Rightarrow \ 6\left( {{x}^{2}}-3ax+2{{a}^{2}} \right)=0$
$\Rightarrow \ {{x}^{2}}-3ax+2{{a}^{2}}=0$
$\Rightarrow \ {{x}^{2}}-ax-2ax+2{{a}^{2}}=0$
$\Rightarrow \ x\left( x-a \right)-2a\left( x-a \right)=0$
Taking $\left( x-a \right)$ common
$\Rightarrow \ \left( x-a \right)\ \left( x-2a \right)=0$
$\Rightarrow \ x=a\ or\ x=2a$
For finding which one is maxima and which one is minima,
$\text{f}''\left( a \right)=12\left( a \right)-180=6a<0$
Therefore $\text{f}\left( x \right)$ is maxima at $x=a$
$\text{f}''\left( 2a \right)=12\left( 2a \right)-180$
$24a-18a=6a>0$
Therefore $\text{f}\left( x \right)$ is minimum at $x=2a$
Now from question we know that at $x={{x}_{1}}\ ,\text{f}\left( x \right)$ has 0 local maximum
So, ${{x}_{1}}=a$
And at $x={{x}_{2}}\ \text{f}\left( x \right)$ has a local minima
So, ${{x}_{2}}=2a$
It is given,
${{x}_{2}}=x_{1}^{2}$
$\Rightarrow \ 2a={{a}^{2}}$
$\Rightarrow \ {{a}^{2}}-2a=0$
$\Rightarrow \ a\left( a-2 \right)=0$
$\Rightarrow \ a=0\ or\ a=2$
$a\ne{0},$ since in the question it is said that $a>0$
Therefore $a=2$ answer.
Note: A local maximum point an a function ‘s a point $\left( x,y \right)$ on the graph of the function whose y coordinate is large than all then co-coordinate on the graph at points “close to” $\left( x,y \right)$.
Similarly$\left( x,y \right)$s is a local minimum point if. It has locally the smallest y coordinate.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

