
If the function \[f:\left[ {1,\infty } \right) \to \left[ {1,\infty } \right)\] is defined by \[f\left( x \right) = {2^{x\left( {x - 1} \right)}}\;\;\]is invertible, then \[{f^{ - 1}}\left( x \right)\;\] is
Answer
584.4k+ views
Hint:Here first we will let the given function to be y and then take log of both the sides and find the value of x in terms of y to get the value of \[{f^{ - 1}}\left( y \right)\;\]. Then we will replace y by x to get the desired answer.
Complete step-by-step answer:
Let \[f\left( x \right) = y\]
Then,
\[\;x = {f^{ - 1}}\left( y \right)\]………………………………..(1)
Also,
\[y = {2^{x\left( {x - 1} \right)}}\;\]
Now taking log of the sides using the formula:-
\[\log \left( {{a^b}} \right) = b\log a\]
We get:-
\[\log y = x\left( {x - 1} \right).\log 2\]
Now we will solve the above equation for the value of x:
\[
\log y = \left( {{x^2} - x} \right)\log 2 \\
\log y = {x^2}\log 2 - x\log 2 \\
{x^2}\log 2 - x\log 2 - \log y = 0.......................\left( 2 \right) \\
\]
Now, since a quadratic equation is formed , therefore we will use the quadratic formula to find the value of x.
For any quadratic equation of the form \[a{x^2} + bx + c = 0\] the quadratic formula is given by:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Comparing equation 2 with the standard equation we get:-
\[
a = \log 2 \\
b = - \log 2 \\
c = - \log y \\
\]
Hence applying quadratic formula for these values we get:-
\[
x = \dfrac{{ - \left( { - \log 2} \right) \pm \sqrt {{{\left( { - \log 2} \right)}^2} - 4\left( {\log 2} \right)\left( { - \log y} \right)} }}{{2\left( {\log 2} \right)}} \\
x = \dfrac{{\log 2 \pm \sqrt {{{\log }^2}2 + 4\log 2.\log y} }}{{2\log 2}} \\
\]
Now taking \[\log 2\] common from both the numerator and the denominator we get:-
\[
x = \dfrac{{\log 2\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{{2\log 2}} \\
x = \dfrac{{\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{2} \\
\]
Now we will use the following property of log:-
\[\dfrac{{\log ea}}{{\log eb}} = \dfrac{{\log ba}}{{\log bb}}\]
Now since, \[\log bb = 1\]
Therefore,
\[\dfrac{{\log ea}}{{\log eb}} = \log ba\]
Hence applying this property we get:-
\[x = \dfrac{{1 \pm \sqrt {1 + 4\log 2y} }}{2}\]
Now since, \[x \in \left[ {1,\infty } \right)\] therefore, ‘-ve’ sign can be omitted
Hence we get:-
\[x = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}\]
Now putting this value in equation (1) we get:-
\[{f^{ - 1}}\left( y \right) = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}\]
Replacing y by x we get:-
\[{f^{ - 1}}\left( x \right) = \dfrac{{1 + \sqrt {1 + 4\log 2x} }}{2}\]
Note:The quantity inside the logarithm function can never be zero as logarithm function is not defined at zero
Also, the logarithm function is a strictly increasing function.
Any function f is invertible if and only if it is one – one and onto and if it is invertible then only we can find its inverse
Complete step-by-step answer:
Let \[f\left( x \right) = y\]
Then,
\[\;x = {f^{ - 1}}\left( y \right)\]………………………………..(1)
Also,
\[y = {2^{x\left( {x - 1} \right)}}\;\]
Now taking log of the sides using the formula:-
\[\log \left( {{a^b}} \right) = b\log a\]
We get:-
\[\log y = x\left( {x - 1} \right).\log 2\]
Now we will solve the above equation for the value of x:
\[
\log y = \left( {{x^2} - x} \right)\log 2 \\
\log y = {x^2}\log 2 - x\log 2 \\
{x^2}\log 2 - x\log 2 - \log y = 0.......................\left( 2 \right) \\
\]
Now, since a quadratic equation is formed , therefore we will use the quadratic formula to find the value of x.
For any quadratic equation of the form \[a{x^2} + bx + c = 0\] the quadratic formula is given by:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Comparing equation 2 with the standard equation we get:-
\[
a = \log 2 \\
b = - \log 2 \\
c = - \log y \\
\]
Hence applying quadratic formula for these values we get:-
\[
x = \dfrac{{ - \left( { - \log 2} \right) \pm \sqrt {{{\left( { - \log 2} \right)}^2} - 4\left( {\log 2} \right)\left( { - \log y} \right)} }}{{2\left( {\log 2} \right)}} \\
x = \dfrac{{\log 2 \pm \sqrt {{{\log }^2}2 + 4\log 2.\log y} }}{{2\log 2}} \\
\]
Now taking \[\log 2\] common from both the numerator and the denominator we get:-
\[
x = \dfrac{{\log 2\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{{2\log 2}} \\
x = \dfrac{{\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{2} \\
\]
Now we will use the following property of log:-
\[\dfrac{{\log ea}}{{\log eb}} = \dfrac{{\log ba}}{{\log bb}}\]
Now since, \[\log bb = 1\]
Therefore,
\[\dfrac{{\log ea}}{{\log eb}} = \log ba\]
Hence applying this property we get:-
\[x = \dfrac{{1 \pm \sqrt {1 + 4\log 2y} }}{2}\]
Now since, \[x \in \left[ {1,\infty } \right)\] therefore, ‘-ve’ sign can be omitted
Hence we get:-
\[x = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}\]
Now putting this value in equation (1) we get:-
\[{f^{ - 1}}\left( y \right) = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}\]
Replacing y by x we get:-
\[{f^{ - 1}}\left( x \right) = \dfrac{{1 + \sqrt {1 + 4\log 2x} }}{2}\]
Note:The quantity inside the logarithm function can never be zero as logarithm function is not defined at zero
Also, the logarithm function is a strictly increasing function.
Any function f is invertible if and only if it is one – one and onto and if it is invertible then only we can find its inverse
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

