Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If the function \[f:\left[ {1,\infty } \right) \to \left[ {1,\infty } \right)\] is defined by \[f\left( x \right) = {2^{x\left( {x - 1} \right)}}\;\;\]is invertible, then \[{f^{ - 1}}\left( x \right)\;\] is

Answer
VerifiedVerified
584.4k+ views
Hint:Here first we will let the given function to be y and then take log of both the sides and find the value of x in terms of y to get the value of \[{f^{ - 1}}\left( y \right)\;\]. Then we will replace y by x to get the desired answer.

Complete step-by-step answer:
Let \[f\left( x \right) = y\]
Then,
\[\;x = {f^{ - 1}}\left( y \right)\]………………………………..(1)
Also,
\[y = {2^{x\left( {x - 1} \right)}}\;\]
Now taking log of the sides using the formula:-
\[\log \left( {{a^b}} \right) = b\log a\]
We get:-
\[\log y = x\left( {x - 1} \right).\log 2\]
Now we will solve the above equation for the value of x:
\[
  \log y = \left( {{x^2} - x} \right)\log 2 \\
  \log y = {x^2}\log 2 - x\log 2 \\
  {x^2}\log 2 - x\log 2 - \log y = 0.......................\left( 2 \right) \\
 \]
Now, since a quadratic equation is formed , therefore we will use the quadratic formula to find the value of x.
For any quadratic equation of the form \[a{x^2} + bx + c = 0\] the quadratic formula is given by:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Comparing equation 2 with the standard equation we get:-
\[
  a = \log 2 \\
  b = - \log 2 \\
  c = - \log y \\
 \]
Hence applying quadratic formula for these values we get:-
\[
  x = \dfrac{{ - \left( { - \log 2} \right) \pm \sqrt {{{\left( { - \log 2} \right)}^2} - 4\left( {\log 2} \right)\left( { - \log y} \right)} }}{{2\left( {\log 2} \right)}} \\
  x = \dfrac{{\log 2 \pm \sqrt {{{\log }^2}2 + 4\log 2.\log y} }}{{2\log 2}} \\
 \]
Now taking \[\log 2\] common from both the numerator and the denominator we get:-
\[
  x = \dfrac{{\log 2\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{{2\log 2}} \\
  x = \dfrac{{\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{2} \\
 \]
Now we will use the following property of log:-
\[\dfrac{{\log ea}}{{\log eb}} = \dfrac{{\log ba}}{{\log bb}}\]
Now since, \[\log bb = 1\]
Therefore,
\[\dfrac{{\log ea}}{{\log eb}} = \log ba\]
Hence applying this property we get:-
\[x = \dfrac{{1 \pm \sqrt {1 + 4\log 2y} }}{2}\]
Now since, \[x \in \left[ {1,\infty } \right)\] therefore, ‘-ve’ sign can be omitted
Hence we get:-
\[x = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}\]
Now putting this value in equation (1) we get:-
\[{f^{ - 1}}\left( y \right) = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}\]
Replacing y by x we get:-
\[{f^{ - 1}}\left( x \right) = \dfrac{{1 + \sqrt {1 + 4\log 2x} }}{2}\]

Note:The quantity inside the logarithm function can never be zero as logarithm function is not defined at zero
Also, the logarithm function is a strictly increasing function.
Any function f is invertible if and only if it is one – one and onto and if it is invertible then only we can find its inverse