
If the function $f$ defined as $f(x) = \dfrac{1}{x} - \dfrac{{k - 1}}{{{e^{2x}} - 1}},{\text{ }}x \ne 0$, is continuous at $x = 0$, then the ordered pair $(k,f(0))$ is equal to?
A) $\left( {3,1} \right)$
B) $\left( {3,2} \right)$
C) $\left( {\dfrac{1}{3},2} \right)$
D) $\left( {2,1} \right)$
Answer
587.4k+ views
Hint:In the above question we are given a function continuous at $x = 0$ and we have to find value of $(k,f(0))$, that is in short we have to find value of $k{\text{ and }}f(0)$. Now in order to solve the question use the fact given in question that function continuous at $x = 0$, by using definition of continuity of any function at a point.Let a function $g(x)$ be continuous at $x = a$, if
$g(a + ) = g(a) = g(a - )$, where $g(a + ) = \mathop {\lim }\limits_{h \to 0} g(a + h){\text{ and }}g(a - ) = \mathop {\lim }\limits_{h \to 0} g(a - h)$.
So, using this we can easily find the required values.
Complete step-by-step answer:
We are given a function $f(x) = \dfrac{1}{x} - \dfrac{{k - 1}}{{{e^{2x}} - 1}},{\text{ }}x \ne 0$ …………….(1)
which is continuous at $x = 0$.
So here the question is giving us an idea about continuity of the function at $x = 0$.
So now we will consider the definition of continuity.
Let a function $g(x)$ be continuous at $x = a$, if
$g(a + ) = g(a) = g(a - )$, where $g(a + ) = \mathop {\lim }\limits_{h \to 0} g(a + h){\text{ and }}g(a - ) = \mathop {\lim }\limits_{h \to 0} g(a - h)$ …………….(2)
Now we are given function $f(x)$ which is continuous at $x = 0$ so now using definition of continuity from (2), we get,
$f(0 + ) = f(0) = f(0 - )$, where $f(0 + ) = \mathop {\lim }\limits_{h \to 0} f(0 + h){\text{ and }}f(0 - ) = \mathop {\lim }\limits_{h \to 0} f(0 - h)$ …………….(3)
Firstly, lets find the value of $f(0 - )$ using (3), we get,
Therefore, $f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{0 + h}} - \dfrac{{k - 1}}{{{e^{2(0 + h)}} - 1}}$
Now further simplifying, we get,
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} - \dfrac{{k - 1}}{{{e^{2h}} - 1}}$
Now taking L.C.M, we get,
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - (k - 1)(h)}}{{(h)({e^{2h}} - 1)}}$
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}}$ …………….(4)
Now we how the series expansion for ${e^x}$ is,
${e^x} = 1 + x + \dfrac{{{x^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{{x^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{{x^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_$, where $\left| \!{\underline {\,
n \,}} \right. = 1 \times 2 \times 3 \times 4 \times \_\_\_ \times n$
Hence using the above formula, we can get value of ${e^h}$, so we get
${e^h} = 1 + x + \dfrac{{{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_$
Now according to (4), we need ${e^{2h}}$, so we will get,
${e^{2h}} = 1 + 2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_$ …………….(5)
Now, substituting value of ${e^{ - 2h}}$ from (5) in (4), we get,
$
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - 1 - kh + h}}{{(h)\left\{ {\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - 1} \right\}}} \\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - kh + h}}{{(h)\left\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)} \right\}}} \\
$
Now taking $h$ common from numerator.
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left\{ {\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - k + 1} \right\}}}{{(h)\left\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)} \right\}}}$
Now cancelling $h$ from numerator and denominator we get,
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - k}}{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}$
Now taking $h$ common from denominator we get
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - k}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}$ …………….(6)
Now for this limit to exist $h$ present in denominator must be cancelled, and to cancel it, we know $3 - k = 0$ and then we can take $h$ common from numerator and cancel it with $h$ present in denominator.
So, from this we can get value of $k$-
$
3 - k = 0 \\
\Rightarrow k = 3 \\
$ …………….(7)
Now considering (6) and substituting value of $k$ from (7) in it, we get,
$
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - 3}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
$
Now taking $h$ common from numerator and cancelling it with $h$ in denominator, we get,
$
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{(h)\left( {\dfrac{4}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8h}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{4}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8h}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}{{\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
$
Now simply solving the limit $h \to 0$, we get,
$f(0 + ) = \dfrac{{\dfrac{4}{{\left| \!{\underline {\,
2 \,}} \right. }}}}{2}$
Now using $\left| \!{\underline {\,
2 \,}} \right. = 1 \times 2 = 2$, we get,
$
f(0 + ) = \dfrac{{\dfrac{4}{2}}}{2} \\
f(0 + ) = \dfrac{4}{4} \\
f(0 + ) = 1 \\
$ …………….(8)
Now using definition of continuity for $f$, we have
$f(0 + ) = f(0) = f(0 - )$
So, we can write that using (8),
$f(0 + ) = f(0) = 1$
Hence $f(0) = 1$ …………….(9)
Now from (7) and (9), we have,
$k = 3{\text{ and }}f(0) = 1$ …………….(10)
Now according to question, we have to find the ordered pair $\left( {k,f(0)} \right)$
Now substituting values of $k{\text{ and }}f(0)$ from (10) in ordered pair we get-
$\left( {k,f(0)} \right) \equiv \left( {3,1} \right)$
So, the correct answer is “Option A”.
Note:In the above question to find the values of $k{\text{ and }}f(0)$ we used $f(0 + )$, but if we use $f(0 - )$ there will be no change in the answers. Therefore, we can use $f(0 + ){\text{ as well as }}f(0 - )$.
We can also use another method to solve limit in (4)
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}}$
As we can clearly see for $x \to 0,\dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}} \to \dfrac{0}{0}$
So, it is indeterminate form $\dfrac{0}{0}$, and we can use L hospital rule.
L hospital rule states that
$\mathop {\lim }\limits_{x \to 0} \dfrac{{m(x)}}{{n(x)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{dm(x)}}{{dx}}}}{{\dfrac{{dn(x)}}{{dx}}}}$, where $m(x) \to 0,n(x) \to 0{\text{ for }}x \to 0$
Therefore, we can now easily find $k{\text{ and }}f(0)$, using L hospital rule for (4).
$g(a + ) = g(a) = g(a - )$, where $g(a + ) = \mathop {\lim }\limits_{h \to 0} g(a + h){\text{ and }}g(a - ) = \mathop {\lim }\limits_{h \to 0} g(a - h)$.
So, using this we can easily find the required values.
Complete step-by-step answer:
We are given a function $f(x) = \dfrac{1}{x} - \dfrac{{k - 1}}{{{e^{2x}} - 1}},{\text{ }}x \ne 0$ …………….(1)
which is continuous at $x = 0$.
So here the question is giving us an idea about continuity of the function at $x = 0$.
So now we will consider the definition of continuity.
Let a function $g(x)$ be continuous at $x = a$, if
$g(a + ) = g(a) = g(a - )$, where $g(a + ) = \mathop {\lim }\limits_{h \to 0} g(a + h){\text{ and }}g(a - ) = \mathop {\lim }\limits_{h \to 0} g(a - h)$ …………….(2)
Now we are given function $f(x)$ which is continuous at $x = 0$ so now using definition of continuity from (2), we get,
$f(0 + ) = f(0) = f(0 - )$, where $f(0 + ) = \mathop {\lim }\limits_{h \to 0} f(0 + h){\text{ and }}f(0 - ) = \mathop {\lim }\limits_{h \to 0} f(0 - h)$ …………….(3)
Firstly, lets find the value of $f(0 - )$ using (3), we get,
Therefore, $f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{0 + h}} - \dfrac{{k - 1}}{{{e^{2(0 + h)}} - 1}}$
Now further simplifying, we get,
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} - \dfrac{{k - 1}}{{{e^{2h}} - 1}}$
Now taking L.C.M, we get,
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - (k - 1)(h)}}{{(h)({e^{2h}} - 1)}}$
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}}$ …………….(4)
Now we how the series expansion for ${e^x}$ is,
${e^x} = 1 + x + \dfrac{{{x^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{{x^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{{x^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_$, where $\left| \!{\underline {\,
n \,}} \right. = 1 \times 2 \times 3 \times 4 \times \_\_\_ \times n$
Hence using the above formula, we can get value of ${e^h}$, so we get
${e^h} = 1 + x + \dfrac{{{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_$
Now according to (4), we need ${e^{2h}}$, so we will get,
${e^{2h}} = 1 + 2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_$ …………….(5)
Now, substituting value of ${e^{ - 2h}}$ from (5) in (4), we get,
$
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - 1 - kh + h}}{{(h)\left\{ {\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - 1} \right\}}} \\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - kh + h}}{{(h)\left\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)} \right\}}} \\
$
Now taking $h$ common from numerator.
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left\{ {\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - k + 1} \right\}}}{{(h)\left\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)} \right\}}}$
Now cancelling $h$ from numerator and denominator we get,
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - k}}{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}$
Now taking $h$ common from denominator we get
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - k}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}$ …………….(6)
Now for this limit to exist $h$ present in denominator must be cancelled, and to cancel it, we know $3 - k = 0$ and then we can take $h$ common from numerator and cancel it with $h$ present in denominator.
So, from this we can get value of $k$-
$
3 - k = 0 \\
\Rightarrow k = 3 \\
$ …………….(7)
Now considering (6) and substituting value of $k$ from (7) in it, we get,
$
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right) - 3}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
$
Now taking $h$ common from numerator and cancelling it with $h$ in denominator, we get,
$
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{(h)\left( {\dfrac{4}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8h}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{4}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8h}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}}{{\left( {2 + \dfrac{{4h}}{{\left| \!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \!{\underline {\,
4 \,}} \right. }} + \_\_\_} \right)}} \\
$
Now simply solving the limit $h \to 0$, we get,
$f(0 + ) = \dfrac{{\dfrac{4}{{\left| \!{\underline {\,
2 \,}} \right. }}}}{2}$
Now using $\left| \!{\underline {\,
2 \,}} \right. = 1 \times 2 = 2$, we get,
$
f(0 + ) = \dfrac{{\dfrac{4}{2}}}{2} \\
f(0 + ) = \dfrac{4}{4} \\
f(0 + ) = 1 \\
$ …………….(8)
Now using definition of continuity for $f$, we have
$f(0 + ) = f(0) = f(0 - )$
So, we can write that using (8),
$f(0 + ) = f(0) = 1$
Hence $f(0) = 1$ …………….(9)
Now from (7) and (9), we have,
$k = 3{\text{ and }}f(0) = 1$ …………….(10)
Now according to question, we have to find the ordered pair $\left( {k,f(0)} \right)$
Now substituting values of $k{\text{ and }}f(0)$ from (10) in ordered pair we get-
$\left( {k,f(0)} \right) \equiv \left( {3,1} \right)$
So, the correct answer is “Option A”.
Note:In the above question to find the values of $k{\text{ and }}f(0)$ we used $f(0 + )$, but if we use $f(0 - )$ there will be no change in the answers. Therefore, we can use $f(0 + ){\text{ as well as }}f(0 - )$.
We can also use another method to solve limit in (4)
$f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}}$
As we can clearly see for $x \to 0,\dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}} \to \dfrac{0}{0}$
So, it is indeterminate form $\dfrac{0}{0}$, and we can use L hospital rule.
L hospital rule states that
$\mathop {\lim }\limits_{x \to 0} \dfrac{{m(x)}}{{n(x)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{dm(x)}}{{dx}}}}{{\dfrac{{dn(x)}}{{dx}}}}$, where $m(x) \to 0,n(x) \to 0{\text{ for }}x \to 0$
Therefore, we can now easily find $k{\text{ and }}f(0)$, using L hospital rule for (4).
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

