
If the fourth term in binomial expansion of \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}\] is equals to 200, and x > 1, then the value of x is:
(a)${{10}^{3}}$
(b) $100$
(c) ${{10}^{4}}$
(d) 10
Answer
567k+ views
Hint: To solve this question, first we will expand the given expression by using binomial expansion, then, we will find the fourth term of expansion by using the ${{n}^{th}}$ term formula. After that, we will put that term equal to 200. And then using properties of the logarithmic and exponential function, we will solve for the value of x such that x > 1.
Complete step-by-step solution
Now, in question it is given that fourth term in binomial expansion of \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}\] is equals to 200.
Let, the fourth term of binomial expansion be denoted by ${{T}_{4}}$.
Using concept of binomial expansion of \[{{(a+b)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\] , we get
Now, \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{6}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{0}}{{+}^{6}}{{C}_{1}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{5}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{1}}+......+{{\,}^{6}}{{C}_{6}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{0}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{6}}\]
On simplifying, we get
\[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}={{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{6}}+6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{5}}\left( {{x}^{\dfrac{1}{12}}} \right)+......+\,{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{6}}\], as \[^{n}{{C}_{0}}=1\], \[^{n}{{C}_{1}}=n\] and \[^{n}{{C}_{n}}=1\] where \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], and $n!=n(n-1)(n-2).......3.2.1$ .
Also, we know that ${{n}^{th}}$ term of expansion \[{{(a+b)}^{n}}\], is given as ${{T}_{n}}{{=}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$, where r + 1 = n.
So, we can say that fourth term on expansion of \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}\] will be,${{T}_{4}}{{=}^{6}}{{C}_{3}}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{3}}$
As given that, ${{T}_{4}}=200$
So, we can say that
$^{6}{{C}_{3}}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{3}}=200$
Now, on simplifying the terms, we get
$\dfrac{6!}{3!\left( 6-3 \right)!}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200$, as ${{({{x}^{a}})}^{b}}={{x}^{a}}^{b}$
On simplifying, factorials, we get
$\dfrac{6.5.4.3!}{3.2\left( 3 \right)!}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200$
$\Rightarrow 20{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200$
On solving, we get
${{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=10$
Also, we know that ${{x}^{a}}{{x}^{b}}={{x}^{a}}^{+b}$
So, we have
\[\left( {{x}^{\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)\left( {{x}^{\dfrac{1}{4}}} \right)=10\]
\[\Rightarrow {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}}=10\]
Now, taking log base 10 on both side, that is ${{\log }_{10}}$ on both side, we get
\[{{\log }_{10}}\left( {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)={{\log }_{10}}(10)\]
We know that, \[{{\log }_{b}}(b)=1\],
So, we get
\[{{\log }_{10}}\left( {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)=1\]
Also, we know that, \[{{\log }_{a}}{{b}^{c}}=c{{\log }_{a}}b\]
So, we get
\[\left( \dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right) \right){{\log }_{10}}\left( x \right)=1\]
Let, \[{{\log }_{10}}\left( x \right)=t\], we get
\[\left( \dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+t)} \right) \right)t=1\]
On simplifying, we get
\[\dfrac{t}{4}+\dfrac{3}{2}\left( \dfrac{t}{(1+t)} \right)=1\]
\[\Rightarrow {{t}^{2}}+7t=4+4t\]
Or, \[{{t}^{2}}+3t-4=0\]
Now, for quadratic equation, $a{{x}^{2}}+bx+c=0$ value of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
So, for \[{{t}^{2}}+3t-4=0\]
$t=\dfrac{-(3)\pm \sqrt{{{(3)}^{2}}-4(1)(-4)}}{2(1)}$
$t=1,-4$
As, \[{{\log }_{10}}\left( x \right)=t\]
So, ${{\log }_{10}}\left( x \right)=1,-4$
As, we know that, \[{{\log }_{a}}\left( b \right)=c\] then, \[b={{a}^{c}}\]
So, $x=10,{{10}^{-4}}$
As I question it is given that x > 1
So, x = 10
Hence, option ( d ) is correct.
Note: To solve such question, one must know basic properties of logarithmic and exponential functions such as \[{{\log }_{b}}(b)=1\], \[{{\log }_{a}}\left( b \right)=c\] then, \[b={{a}^{c}}\], \[{{\log }_{a}}{{b}^{c}}=c{{\log }_{a}}b\] and ${{({{x}^{a}})}^{b}}={{x}^{a}}^{b}$, ${{x}^{a}}{{x}^{b}}={{x}^{a}}^{+b}$. Always remember that \[{{(a+b)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\] whose ${{n}^{th}}$ term of expansion \[{{(a+b)}^{n}}\], is given as ${{T}_{n}}{{=}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$, where r + 1 = n. Try to solve these questions without any calculation error, else the answer obtained will be wrong or the solution gets more complex.
Complete step-by-step solution
Now, in question it is given that fourth term in binomial expansion of \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}\] is equals to 200.
Let, the fourth term of binomial expansion be denoted by ${{T}_{4}}$.
Using concept of binomial expansion of \[{{(a+b)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\] , we get
Now, \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{6}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{0}}{{+}^{6}}{{C}_{1}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{5}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{1}}+......+{{\,}^{6}}{{C}_{6}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{0}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{6}}\]
On simplifying, we get
\[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}={{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{6}}+6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{5}}\left( {{x}^{\dfrac{1}{12}}} \right)+......+\,{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{6}}\], as \[^{n}{{C}_{0}}=1\], \[^{n}{{C}_{1}}=n\] and \[^{n}{{C}_{n}}=1\] where \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], and $n!=n(n-1)(n-2).......3.2.1$ .
Also, we know that ${{n}^{th}}$ term of expansion \[{{(a+b)}^{n}}\], is given as ${{T}_{n}}{{=}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$, where r + 1 = n.
So, we can say that fourth term on expansion of \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}\] will be,${{T}_{4}}{{=}^{6}}{{C}_{3}}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{3}}$
As given that, ${{T}_{4}}=200$
So, we can say that
$^{6}{{C}_{3}}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{3}}=200$
Now, on simplifying the terms, we get
$\dfrac{6!}{3!\left( 6-3 \right)!}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200$, as ${{({{x}^{a}})}^{b}}={{x}^{a}}^{b}$
On simplifying, factorials, we get
$\dfrac{6.5.4.3!}{3.2\left( 3 \right)!}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200$
$\Rightarrow 20{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200$
On solving, we get
${{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=10$
Also, we know that ${{x}^{a}}{{x}^{b}}={{x}^{a}}^{+b}$
So, we have
\[\left( {{x}^{\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)\left( {{x}^{\dfrac{1}{4}}} \right)=10\]
\[\Rightarrow {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}}=10\]
Now, taking log base 10 on both side, that is ${{\log }_{10}}$ on both side, we get
\[{{\log }_{10}}\left( {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)={{\log }_{10}}(10)\]
We know that, \[{{\log }_{b}}(b)=1\],
So, we get
\[{{\log }_{10}}\left( {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)=1\]
Also, we know that, \[{{\log }_{a}}{{b}^{c}}=c{{\log }_{a}}b\]
So, we get
\[\left( \dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right) \right){{\log }_{10}}\left( x \right)=1\]
Let, \[{{\log }_{10}}\left( x \right)=t\], we get
\[\left( \dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+t)} \right) \right)t=1\]
On simplifying, we get
\[\dfrac{t}{4}+\dfrac{3}{2}\left( \dfrac{t}{(1+t)} \right)=1\]
\[\Rightarrow {{t}^{2}}+7t=4+4t\]
Or, \[{{t}^{2}}+3t-4=0\]
Now, for quadratic equation, $a{{x}^{2}}+bx+c=0$ value of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
So, for \[{{t}^{2}}+3t-4=0\]
$t=\dfrac{-(3)\pm \sqrt{{{(3)}^{2}}-4(1)(-4)}}{2(1)}$
$t=1,-4$
As, \[{{\log }_{10}}\left( x \right)=t\]
So, ${{\log }_{10}}\left( x \right)=1,-4$
As, we know that, \[{{\log }_{a}}\left( b \right)=c\] then, \[b={{a}^{c}}\]
So, $x=10,{{10}^{-4}}$
As I question it is given that x > 1
So, x = 10
Hence, option ( d ) is correct.
Note: To solve such question, one must know basic properties of logarithmic and exponential functions such as \[{{\log }_{b}}(b)=1\], \[{{\log }_{a}}\left( b \right)=c\] then, \[b={{a}^{c}}\], \[{{\log }_{a}}{{b}^{c}}=c{{\log }_{a}}b\] and ${{({{x}^{a}})}^{b}}={{x}^{a}}^{b}$, ${{x}^{a}}{{x}^{b}}={{x}^{a}}^{+b}$. Always remember that \[{{(a+b)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}\] whose ${{n}^{th}}$ term of expansion \[{{(a+b)}^{n}}\], is given as ${{T}_{n}}{{=}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$, where r + 1 = n. Try to solve these questions without any calculation error, else the answer obtained will be wrong or the solution gets more complex.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

