
If the fourth roots of unity are \[{z_1},{z_2},{z_3},{z_4}\]
then ${z_1}^2 + {z_2}^2 + {z_3}^2 + {z_4}^2$ is equal to
A.$1$
B.$0$
C.$i$
D.None of these
Answer
591.9k+ views
Hint :- Make use of the concept of fourth roots of unity and solve this
Fourth roots of Unity
Properties of Four Fourth Roots of Unity
a. Sum of all the four fourth roots of unity is zero.
b. The real fourth roots of unity are additive
Inverse of each other.
c. Both the complex / imaginary Fourth roots of
unity are conjugate for each other
d. Product of all the Fourth roots of unity is –
Complete step by step by solution
Let $x$ be the four fourth roots of $1$, if then we can write
$x = 4\sqrt 1 $
We should write it
$x = {(1)^{\dfrac{1}{4}}}$
$ \Rightarrow {x^4} = 1$
$ \Rightarrow {x^4} - {1^4} = 0$
\[ \Rightarrow {({x^2})^2} - {({1^2})^2} = 0\]
\[[{a^2} - {b^2} = (a + b)(a - b)]\]
Therefore,
\[ \Rightarrow ({x^2} - 1)({x^2} + 1) = 0\]
Either,
\[({x^2} - 1) = 0 or ({x^2} + 1) = 0\]
\[{x^2} = 1 or {x^2} = - 1\]
\[x = \pm \sqrt 1 or x = \pm \sqrt { - 1} \]
\[x = \pm 1 or x = \pm i\]
Now, the Four fourth roots are unity is $[1, - 1,i, - i]$
Now we complete the answer
Step by step
(Image)
\[{z_1},{z_2},{z_3},{z_4}\] are roots of
${x^4} - 1 = 0$
\[\therefore {z_1} + {z_2} + {z_3} + {z_4} = 0\]
\[{z_1}{z_2} + {z_2}{z_3} + {z_3}{z_4} + {z_4}{z_1} + {z_1}{z_3} + {z_2}{z_4} = 0\]
\[\therefore {({z_1} + {z_2} + {z_3} + {z_4})^2} = \sum\limits_{}^{} {{z_1}^2} \]
$\sum\limits_{i = 1}^4 {} \sum\limits_{i = 1}^4 {} {z_1}{z_i}$
\[0 = {\sum {{z_1}} ^2} = 0\]
\[\therefore {\sum {{z_1}} ^2} = 0\]
So B is the Answer
B=$0$
Note–Complex numbers are the numbers which are expressed in the form of $a + ib$, where $i$ is an imaginary number called iota and has the value of $\sqrt { - 1} $.
Therefore, the combination of both real and imaginary numbers is a complex number.
Fourth roots of Unity
Properties of Four Fourth Roots of Unity
a. Sum of all the four fourth roots of unity is zero.
b. The real fourth roots of unity are additive
Inverse of each other.
c. Both the complex / imaginary Fourth roots of
unity are conjugate for each other
d. Product of all the Fourth roots of unity is –
Complete step by step by solution
Let $x$ be the four fourth roots of $1$, if then we can write
$x = 4\sqrt 1 $
We should write it
$x = {(1)^{\dfrac{1}{4}}}$
$ \Rightarrow {x^4} = 1$
$ \Rightarrow {x^4} - {1^4} = 0$
\[ \Rightarrow {({x^2})^2} - {({1^2})^2} = 0\]
\[[{a^2} - {b^2} = (a + b)(a - b)]\]
Therefore,
\[ \Rightarrow ({x^2} - 1)({x^2} + 1) = 0\]
Either,
\[({x^2} - 1) = 0 or ({x^2} + 1) = 0\]
\[{x^2} = 1 or {x^2} = - 1\]
\[x = \pm \sqrt 1 or x = \pm \sqrt { - 1} \]
\[x = \pm 1 or x = \pm i\]
Now, the Four fourth roots are unity is $[1, - 1,i, - i]$
Now we complete the answer
Step by step
(Image)
\[{z_1},{z_2},{z_3},{z_4}\] are roots of
${x^4} - 1 = 0$
\[\therefore {z_1} + {z_2} + {z_3} + {z_4} = 0\]
\[{z_1}{z_2} + {z_2}{z_3} + {z_3}{z_4} + {z_4}{z_1} + {z_1}{z_3} + {z_2}{z_4} = 0\]
\[\therefore {({z_1} + {z_2} + {z_3} + {z_4})^2} = \sum\limits_{}^{} {{z_1}^2} \]
$\sum\limits_{i = 1}^4 {} \sum\limits_{i = 1}^4 {} {z_1}{z_i}$
\[0 = {\sum {{z_1}} ^2} = 0\]
\[\therefore {\sum {{z_1}} ^2} = 0\]
So B is the Answer
B=$0$
Note–Complex numbers are the numbers which are expressed in the form of $a + ib$, where $i$ is an imaginary number called iota and has the value of $\sqrt { - 1} $.
Therefore, the combination of both real and imaginary numbers is a complex number.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

