
If the expression is $\sqrt{12+\sqrt{140}}-\sqrt{8+2\sqrt{15}}-2\sqrt{10-2\sqrt{21}}=a\sqrt{3}+b\
\sqrt{7}$, then find the value of $\sqrt{8a-b}$.
A. 7
B. 6
C. 3
D. 1
Answer
577.2k+ views
Hint: We express the given root forms into squares to simplify the result. We individually find the root values and find the L.H.S part. We equate the solution with R.H.S to find the value of a and b. We put values in the equation to find the answer of the problem.
Complete step-by-step answer:
The given root form can be expressed in simpler form. The given expressions like $\
\sqrt{12+\sqrt{140}},\sqrt{8+2\sqrt{15}},\sqrt{10-2\sqrt{21}}$ can be expressed into square
form to eliminate the square root.
All the three individual terms are of the form $\sqrt{x+y\pm 2\sqrt{xy}}$ or $\sqrt{x+y\pm \
\sqrt{4xy}}$.
The root values will be $\sqrt{x+y\pm 2\sqrt{xy}}=\sqrt{x+y\pm \sqrt{4xy}}$
$\begin{align}
& \sqrt{x+y\pm \sqrt{4xy}}=\sqrt{x+y\pm 2\sqrt{xy}} \\
& =\sqrt{{{\left( \sqrt{x} \right)}^{2}}+{{\left( \sqrt{y} \right)}^{2}}\pm 2\sqrt{x}\sqrt{y}} \\
& =\sqrt{{{\left( \sqrt{x}\pm \sqrt{y} \right)}^{2}}} \\
& =\sqrt{x}\pm \sqrt{y} \\
\end{align}$
Now we expand them individually.
For the first term $\sqrt{12+\sqrt{140}}$, we try to put the general form to find the value of x
and y.
$\sqrt{12+\sqrt{140}}$ is of the form $\sqrt{x+y+\sqrt{4xy}}$.
So, $\sqrt{12+\sqrt{140}}=\sqrt{5+7+\sqrt{4\times 5\times 7}}$. Here $x=5,y=7$.
We get $\sqrt{12+\sqrt{140}}=\sqrt{{{\left( \sqrt{5}+\sqrt{7} \right)}^{2}}}=\sqrt{5}+\sqrt{7}$.
For the second term $\sqrt{8+2\sqrt{115}}$, we try to put the general form to find the value of x and y.
$\sqrt{8+2\sqrt{115}}$ is of the form $\sqrt{x+y+2\sqrt{xy}}$.
So, $\sqrt{8+2\sqrt{15}}=\sqrt{5+3+2\sqrt{5\times 3}}$. Here $x=5,y=3$.
We get $\sqrt{8+2\sqrt{15}}=\sqrt{{{\left( \sqrt{5}+\sqrt{3} \right)}^{2}}}=\sqrt{5}+\sqrt{3}$.
For the third term $\sqrt{10-2\sqrt{21}}$, we try to put the general form to find the value of x and y.
$\sqrt{10-2\sqrt{21}}$ is of the form $\sqrt{x+y-2\sqrt{xy}}$.
So, $\sqrt{10-2\sqrt{21}}=\sqrt{7+3-2\sqrt{7\times 3}}$. Here $x=7,y=3$.
We get $\sqrt{10-2\sqrt{21}}=\sqrt{{{\left( \sqrt{7}-\sqrt{3} \right)}^{2}}}=\sqrt{7}-\sqrt{3}$.
Now we put the values in the equation.
$\begin{align}
& \sqrt{12+\sqrt{140}}-\sqrt{8+2\sqrt{15}}-2\sqrt{10-2\sqrt{21}}=a\sqrt{3}+b\sqrt{7} \\
& \Rightarrow \left( \sqrt{5}+\sqrt{7} \right)-\left( \sqrt{5}+\sqrt{3} \right)-2\left( \sqrt{7}-\
\sqrt{3} \right)=a\sqrt{3}+b\sqrt{7} \\
\end{align}$
We solve the equation and interchange the sides.
$\begin{align}
& a\sqrt{3}+b\sqrt{7}=\left( \sqrt{5}+\sqrt{7} \right)-\left( \sqrt{5}+\sqrt{3} \right)-2\left( \
\sqrt{7}-\sqrt{3} \right) \\
& \Rightarrow a\sqrt{3}+b\sqrt{7}=\sqrt{5}+\sqrt{7}-\sqrt{5}-\sqrt{3}-2\sqrt{7}+2\sqrt{3}=\
\sqrt{3}-\sqrt{7} \\
\end{align}$
Now we equate the both coefficient parts of the equation for similar form.
So, $a=1,b=-1$.
We need to find $\sqrt{8a-b}$.
Putting value, we get $\sqrt{8\times 1-\left( -1 \right)}=\sqrt{8+1}=\sqrt{9}=3$.
So, the correct option is (C)
So, the correct answer is “Option C”.
Note: We need to remember the expansion of squares under roots. The form of the given is crucial. We don’t need to use both roots, positive roots are sufficient enough to find the solution. Equating the coefficients are only possible when the surds’ values are equal.
Complete step-by-step answer:
The given root form can be expressed in simpler form. The given expressions like $\
\sqrt{12+\sqrt{140}},\sqrt{8+2\sqrt{15}},\sqrt{10-2\sqrt{21}}$ can be expressed into square
form to eliminate the square root.
All the three individual terms are of the form $\sqrt{x+y\pm 2\sqrt{xy}}$ or $\sqrt{x+y\pm \
\sqrt{4xy}}$.
The root values will be $\sqrt{x+y\pm 2\sqrt{xy}}=\sqrt{x+y\pm \sqrt{4xy}}$
$\begin{align}
& \sqrt{x+y\pm \sqrt{4xy}}=\sqrt{x+y\pm 2\sqrt{xy}} \\
& =\sqrt{{{\left( \sqrt{x} \right)}^{2}}+{{\left( \sqrt{y} \right)}^{2}}\pm 2\sqrt{x}\sqrt{y}} \\
& =\sqrt{{{\left( \sqrt{x}\pm \sqrt{y} \right)}^{2}}} \\
& =\sqrt{x}\pm \sqrt{y} \\
\end{align}$
Now we expand them individually.
For the first term $\sqrt{12+\sqrt{140}}$, we try to put the general form to find the value of x
and y.
$\sqrt{12+\sqrt{140}}$ is of the form $\sqrt{x+y+\sqrt{4xy}}$.
So, $\sqrt{12+\sqrt{140}}=\sqrt{5+7+\sqrt{4\times 5\times 7}}$. Here $x=5,y=7$.
We get $\sqrt{12+\sqrt{140}}=\sqrt{{{\left( \sqrt{5}+\sqrt{7} \right)}^{2}}}=\sqrt{5}+\sqrt{7}$.
For the second term $\sqrt{8+2\sqrt{115}}$, we try to put the general form to find the value of x and y.
$\sqrt{8+2\sqrt{115}}$ is of the form $\sqrt{x+y+2\sqrt{xy}}$.
So, $\sqrt{8+2\sqrt{15}}=\sqrt{5+3+2\sqrt{5\times 3}}$. Here $x=5,y=3$.
We get $\sqrt{8+2\sqrt{15}}=\sqrt{{{\left( \sqrt{5}+\sqrt{3} \right)}^{2}}}=\sqrt{5}+\sqrt{3}$.
For the third term $\sqrt{10-2\sqrt{21}}$, we try to put the general form to find the value of x and y.
$\sqrt{10-2\sqrt{21}}$ is of the form $\sqrt{x+y-2\sqrt{xy}}$.
So, $\sqrt{10-2\sqrt{21}}=\sqrt{7+3-2\sqrt{7\times 3}}$. Here $x=7,y=3$.
We get $\sqrt{10-2\sqrt{21}}=\sqrt{{{\left( \sqrt{7}-\sqrt{3} \right)}^{2}}}=\sqrt{7}-\sqrt{3}$.
Now we put the values in the equation.
$\begin{align}
& \sqrt{12+\sqrt{140}}-\sqrt{8+2\sqrt{15}}-2\sqrt{10-2\sqrt{21}}=a\sqrt{3}+b\sqrt{7} \\
& \Rightarrow \left( \sqrt{5}+\sqrt{7} \right)-\left( \sqrt{5}+\sqrt{3} \right)-2\left( \sqrt{7}-\
\sqrt{3} \right)=a\sqrt{3}+b\sqrt{7} \\
\end{align}$
We solve the equation and interchange the sides.
$\begin{align}
& a\sqrt{3}+b\sqrt{7}=\left( \sqrt{5}+\sqrt{7} \right)-\left( \sqrt{5}+\sqrt{3} \right)-2\left( \
\sqrt{7}-\sqrt{3} \right) \\
& \Rightarrow a\sqrt{3}+b\sqrt{7}=\sqrt{5}+\sqrt{7}-\sqrt{5}-\sqrt{3}-2\sqrt{7}+2\sqrt{3}=\
\sqrt{3}-\sqrt{7} \\
\end{align}$
Now we equate the both coefficient parts of the equation for similar form.
So, $a=1,b=-1$.
We need to find $\sqrt{8a-b}$.
Putting value, we get $\sqrt{8\times 1-\left( -1 \right)}=\sqrt{8+1}=\sqrt{9}=3$.
So, the correct option is (C)
So, the correct answer is “Option C”.
Note: We need to remember the expansion of squares under roots. The form of the given is crucial. We don’t need to use both roots, positive roots are sufficient enough to find the solution. Equating the coefficients are only possible when the surds’ values are equal.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

