
If the expansions in power of x of the function $\dfrac1{\left(1-\mathrm{ax}\right)\left(1-\mathrm{bx}\right)}\left(\mathrm a\neq\mathrm b\right)$ is a0 + a1x + a2x2 + ... then an is-
$\mathrm A.\;\dfrac{\mathrm b^{\mathrm n}-\mathrm a^{\mathrm n}}{\mathrm b-\mathrm a}\\\mathrm B.\;\dfrac{\mathrm a^{\mathrm n}-\mathrm b^{\mathrm n}}{\mathrm b-\mathrm a}\\\mathrm C.\;\dfrac{\mathrm a^{\mathrm n+1}-\mathrm b^{\mathrm n+1}}{\mathrm b-\mathrm a}\\\mathrm D.\;\dfrac{\mathrm b^{\mathrm n+1}-\mathrm a^{\mathrm n+1}}{\mathrm b-\mathrm a}$
Answer
606.6k+ views
Hint: The expression for binomial expansion will be used in this question. The formula used is-
$\left(1-\mathrm x\right)^{-1}=1+\mathrm x+\mathrm x^2+..\;\mathrm{inifinite}\;\mathrm{terms}$
Complete step-by-step answer:
In the question, we have to find and predict the nth term which is the coefficient of xn
$\dfrac1{\left(1-\mathrm{ax}\right)\left(1-\mathrm{bx}\right)}=\left(1-\mathrm{ax}\right)^{-1}\left(1-\mathrm{bx}\right)^{-1}\\=\left(1+\mathrm{ax}+\mathrm a^2\mathrm x^2+...+\mathrm a^{\mathrm n}\mathrm x^{\mathrm n}+...\right)\left(1+\mathrm{bx}+\mathrm b^2\mathrm x^2...+\mathrm b^{\mathrm n}\mathrm x^{\mathrm n}+...\right)\\\mathrm{We}\;\mathrm{have}\;\mathrm{to}\;\mathrm{find}\;\mathrm{the}\;\mathrm{coefficient}\;\mathrm{of}\;\mathrm x^{\mathrm n}\\=\mathrm b^{\mathrm n}+\mathrm b^{\mathrm n-1}\mathrm a+....+\mathrm{ba}^{\mathrm n-1}+\mathrm a^{\mathrm n}\\\\$
This term is a GP of n terms with common ratio $\dfrac{\mathrm a}{\mathrm b}$
We have to find the sum of this GP. The sum of a GP
The sum of a GP is given by the formula-
$\dfrac{\mathrm a\left(\mathrm r^{\mathrm n+1}-1\right)}{\mathrm r-1}\\\mathrm{Substituting}\;\mathrm{the}\;\mathrm{values}-\\\dfrac{\mathrm b^{\mathrm n}\left(\left({\displaystyle\dfrac{\mathrm a}{\mathrm b}}\right)^{\mathrm n+1}-1\right)}{{\displaystyle\dfrac{\mathrm a}{\mathrm b}}-1}\\=\dfrac{\mathrm b^{\mathrm n}}{\mathrm b^{\mathrm n+1}}\left(\dfrac{\mathrm a^{\mathrm n+1}-\mathrm b^{\mathrm n+1}}{\mathrm a-\mathrm b}\right)\mathrm b\\=\dfrac{\mathrm b^{\mathrm n+1}-\mathrm a^{\mathrm n+1}}{\mathrm b-\mathrm a}$
This is the answer.
Hence, the correct option is $\mathrm D.\;\dfrac{\mathrm b^{\mathrm n+1}-\mathrm a^{\mathrm n+1}}{\mathrm b-\mathrm a}$
Note: To solve this problem, one needs to have a knowledge of a GP and its sum. Also, to find the term an, we need to analyze the binomial expansion properly, and write the expression according to the pattern followed.
$\left(1-\mathrm x\right)^{-1}=1+\mathrm x+\mathrm x^2+..\;\mathrm{inifinite}\;\mathrm{terms}$
Complete step-by-step answer:
In the question, we have to find and predict the nth term which is the coefficient of xn
$\dfrac1{\left(1-\mathrm{ax}\right)\left(1-\mathrm{bx}\right)}=\left(1-\mathrm{ax}\right)^{-1}\left(1-\mathrm{bx}\right)^{-1}\\=\left(1+\mathrm{ax}+\mathrm a^2\mathrm x^2+...+\mathrm a^{\mathrm n}\mathrm x^{\mathrm n}+...\right)\left(1+\mathrm{bx}+\mathrm b^2\mathrm x^2...+\mathrm b^{\mathrm n}\mathrm x^{\mathrm n}+...\right)\\\mathrm{We}\;\mathrm{have}\;\mathrm{to}\;\mathrm{find}\;\mathrm{the}\;\mathrm{coefficient}\;\mathrm{of}\;\mathrm x^{\mathrm n}\\=\mathrm b^{\mathrm n}+\mathrm b^{\mathrm n-1}\mathrm a+....+\mathrm{ba}^{\mathrm n-1}+\mathrm a^{\mathrm n}\\\\$
This term is a GP of n terms with common ratio $\dfrac{\mathrm a}{\mathrm b}$
We have to find the sum of this GP. The sum of a GP
The sum of a GP is given by the formula-
$\dfrac{\mathrm a\left(\mathrm r^{\mathrm n+1}-1\right)}{\mathrm r-1}\\\mathrm{Substituting}\;\mathrm{the}\;\mathrm{values}-\\\dfrac{\mathrm b^{\mathrm n}\left(\left({\displaystyle\dfrac{\mathrm a}{\mathrm b}}\right)^{\mathrm n+1}-1\right)}{{\displaystyle\dfrac{\mathrm a}{\mathrm b}}-1}\\=\dfrac{\mathrm b^{\mathrm n}}{\mathrm b^{\mathrm n+1}}\left(\dfrac{\mathrm a^{\mathrm n+1}-\mathrm b^{\mathrm n+1}}{\mathrm a-\mathrm b}\right)\mathrm b\\=\dfrac{\mathrm b^{\mathrm n+1}-\mathrm a^{\mathrm n+1}}{\mathrm b-\mathrm a}$
This is the answer.
Hence, the correct option is $\mathrm D.\;\dfrac{\mathrm b^{\mathrm n+1}-\mathrm a^{\mathrm n+1}}{\mathrm b-\mathrm a}$
Note: To solve this problem, one needs to have a knowledge of a GP and its sum. Also, to find the term an, we need to analyze the binomial expansion properly, and write the expression according to the pattern followed.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

