
If the equation \[{{\sin }^{4}}x-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0\] has a solution, then k must lie in a interval
A.$\left( -4,-2 \right)$
B.$\left[ -3,2 \right)$
C.$\left( -4,-3 \right)$
D.$\left[ -3,-2 \right)$
Answer
587.1k+ views
Hint: Put $t={{\sin }^{2}}x$ to the given equation to get a quadratic equation in ‘t’. Now get the roots of that quadratic equation using the quadratic formula, given as: -
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for $a{{x}^{2}}+bx+c=0$
Now, as $t={{\sin }^{2}}x$ so, put the roots from 0 to 1 as range of ${{\sin }^{2}}x$ is $\left[ 0,1 \right]$ . Get the value of k using this approach.
Complete step-by-step answer:
Given equation in the problem is \[{{\sin }^{4}}x-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0\] …………………………..(i)
Now, as we can rewrite the above equation as,
$\Rightarrow {{\left( {{\sin }^{2}}x \right)}^{2}}-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0$
So, let us suppose $t={{\sin }^{2}}x$ to get the equation in simplified form as
$\Rightarrow {{t}^{2}}-\left( k+2 \right)t-\left( k+3 \right)=0$ …………………………………(ii)
Now, as we know roots of any quadratic equation $a{{x}^{2}}+bx+c=0$ is given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ ……………………………………(iii)
Hence, we can get roots of the quadratic equation given in equation (ii) are given with the help of above equation as
$\Rightarrow t=\dfrac{-\left( -\left( k+2 \right) \right)\pm \sqrt{{{\left( -\left( k+2 \right) \right)}^{2}}-4\times \left( -\left( k+2 \right) \right)\times \left( -\left( k+3 \right) \right)}}{2\times 1}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{\left( k+2 \right)}^{2}}-4\times \left( k+2 \right)\left( k+3 \right)}}{2}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{k}^{2}}+4k+4-4\left( {{k}^{2}}+3k+2k+6 \right)}}{2}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{k}^{2}}+4k+4-4{{k}^{2}}-20k-24}}{2}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}$ ……………………………………………(iv)
Now, as the term $-3{{k}^{2}}-16k-20$ should be greater than 0 to get the real value of t $\left( t={{\sin }^{2}}x \right)$ because it is present in square root form and square root of any negative term will be imaginary. So, we get
$\Rightarrow -3{{k}^{2}}-16k-20\ge 0$
$\Rightarrow -\left( 3{{k}^{2}}+16k+20 \right)\ge 0$
On multiplying the whole equation with $'-'$ sign to both sides, we get
$\Rightarrow 3{{k}^{2}}+16k+20\le 0$
Now, we can factorize the above equation by splitting 16k as $10k+6k$ so that product of 10k and 6k is equal to the product of first and last term i.e. $3{{k}^{2}}$ and 20. Hence, we can rewrite the above equation as
$\Rightarrow 3{{k}^{2}}+10k+6k+20\le 0$
$\Rightarrow k\left( 3k+10 \right)+2\left( 3k+10 \right)\le 0$
$\Rightarrow \left( k+2 \right)\left( 3k+10 \right)\le 0$
$\Rightarrow 3\left( k+2 \right)\left( k+\dfrac{10}{3} \right)\le 0$
$\Rightarrow \left( k+2 \right)\left( k+\dfrac{10}{3} \right)\le 0$
$\Rightarrow \left( k-\left( -2 \right) \right)\left( k-\left( -\dfrac{10}{3} \right) \right)\le 0$ ……………………………………..(v)
As we know, if $\left( x-\alpha \right)\left( x-\beta \right)\le 0$ then $x\in \left[ \alpha ,\beta \right]$ , where $\alpha <\beta $
Hence, we get values of k from the equation (v) as
$\Rightarrow k\in \left[ -\dfrac{10}{3},-2 \right]$ ……………………………………(vi)
Now, as we know $t={{\sin }^{2}}x$ and we know range of $\sin x$ is given as $\sin x\in \left[ -1,1 \right]$ $\Rightarrow -1\le \sin x\le 1$
So, we get $0\le {{\sin }^{2}}x\le 1$
Hence, value of t will lie in $\left[ 0,1 \right]$ .So, from equation (iv) we get
$0\le t\le 1$
$0\le \dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}\le 1$
Multiplying while equation by 2, we get
$0\le \left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}\le 2$
Adding $-k-2$ to all the sides of equation, we get
$\Rightarrow -k-2\le k+2-k-2\pm \sqrt{-3{{k}^{2}}-16k-20}\le 2-k-2$
$\Rightarrow -k-2\le \pm \sqrt{-3{{k}^{2}}-16k-20}\le -k$
On squaring the whole equation, we get the above equation as
$\Rightarrow {{\left( -k-2 \right)}^{2}}\le {{\left( \pm \sqrt{-3{{k}^{2}}-16k-20} \right)}^{2}}\le {{\left( -k \right)}^{2}}$
$\Rightarrow {{k}^{2}}+4k+4\le -3{{k}^{2}}-16k-20\le {{k}^{2}}$ …………………………………………………..(vii)
Now, taking the first two terms of the above equation, we get
${{k}^{2}}+4k+4\le -3{{k}^{2}}-16k-20$
${{k}^{2}}+4k+4+3{{k}^{2}}+16k+20\le 0$
$4{{k}^{2}}+20k+24\le 0$
On dividing the whole equation by 4, we get
${{k}^{2}}+5k+6\le 0$
Factorizing the above equation, we get
$\Rightarrow {{k}^{2}}+3k+2k+6\le 0$
$\Rightarrow k\left( k+3 \right)+2\left( k+3 \right)\le 0$
$\Rightarrow \left( k+2 \right)\left( k+3 \right)\le 0$
$\Rightarrow \left( k-\left( -2 \right) \right)\left( k-\left( -3 \right) \right)\le 0$ …………………………………..(viii)
As, we know if $\left( x-\alpha \right)\left( x-\beta \right)\le 0$ then $x\in \left[ \alpha ,\beta \right]$ , where $\alpha <\beta $
Hence, we get value of k from equation (viii), we get
$k\in \left[ -3,-2 \right]$
Now, taking last two terms of equation (vii), we get
$-3{{k}^{2}}-16k-20\le {{k}^{2}}$
$0\le {{k}^{2}}+3{{k}^{2}}+16k+20$
$4{{k}^{2}}+16k+20\ge 0$
On dividing the whole equation by 4, we get
${{k}^{2}}+4k+5\ge 0$ …………………………………….(ix)
Now, as we know discriminant of any quadratic $a{{x}^{2}}+bx+c=0$ is given as
$D={{b}^{2}}-4ac$
If roots are real, then $D\ge 0$ and if roots are imaginary, the $D<0$ .
Now, discriminant of equation (ix) is given as
$\Rightarrow D={{\left( 4 \right)}^{2}}-4\times 5=16-20=-4$
$\Rightarrow D=-4$ i.e. $D<0$
Hence, roots will not be real so, we cannot factorize equation (ix). So, we can write equation (ix) as
$\Rightarrow {{k}^{2}}+4k+4+1\ge 0$
$\Rightarrow {{\left( k+2 \right)}^{2}}+1\ge 0$
Now, as ${{\left( k+2 \right)}^{2}}$ will always be positive for any $k\in R$ So, equation (ix) will be true for $k\in R$.
Hence, we need to take intersection of $k\in \left[ \dfrac{-10}{3},-2 \right]$ and $k\in \left[ -3,-2 \right]$ and $k\in R$ .
Hence, we get the intersection of them as $k\in \left[ -3,-2 \right]$ .
Hence, option (D) is the correct answer.
Note: One may use only $D={{b}^{2}}-4ac>0$ to get the range of k for having real roots of the given equation, which is wrong. As ${{\sin }^{2}}x$ has a fixed range from 0 to 1. So, finding roots of the given expression will only help to get possible values of k. So, be careful with it.
As ${{\sin }^{2}}x$ has two possible values in the solution. So, one may think there are two possible inequalities, one when we take positive sign of $\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}$ and another using negative sign of the above term. It will be a lengthier approach, so put $\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}$ from 0 to 1. It will be less time taking. So, be careful with this step.
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for $a{{x}^{2}}+bx+c=0$
Now, as $t={{\sin }^{2}}x$ so, put the roots from 0 to 1 as range of ${{\sin }^{2}}x$ is $\left[ 0,1 \right]$ . Get the value of k using this approach.
Complete step-by-step answer:
Given equation in the problem is \[{{\sin }^{4}}x-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0\] …………………………..(i)
Now, as we can rewrite the above equation as,
$\Rightarrow {{\left( {{\sin }^{2}}x \right)}^{2}}-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0$
So, let us suppose $t={{\sin }^{2}}x$ to get the equation in simplified form as
$\Rightarrow {{t}^{2}}-\left( k+2 \right)t-\left( k+3 \right)=0$ …………………………………(ii)
Now, as we know roots of any quadratic equation $a{{x}^{2}}+bx+c=0$ is given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ ……………………………………(iii)
Hence, we can get roots of the quadratic equation given in equation (ii) are given with the help of above equation as
$\Rightarrow t=\dfrac{-\left( -\left( k+2 \right) \right)\pm \sqrt{{{\left( -\left( k+2 \right) \right)}^{2}}-4\times \left( -\left( k+2 \right) \right)\times \left( -\left( k+3 \right) \right)}}{2\times 1}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{\left( k+2 \right)}^{2}}-4\times \left( k+2 \right)\left( k+3 \right)}}{2}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{k}^{2}}+4k+4-4\left( {{k}^{2}}+3k+2k+6 \right)}}{2}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{k}^{2}}+4k+4-4{{k}^{2}}-20k-24}}{2}$
$\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}$ ……………………………………………(iv)
Now, as the term $-3{{k}^{2}}-16k-20$ should be greater than 0 to get the real value of t $\left( t={{\sin }^{2}}x \right)$ because it is present in square root form and square root of any negative term will be imaginary. So, we get
$\Rightarrow -3{{k}^{2}}-16k-20\ge 0$
$\Rightarrow -\left( 3{{k}^{2}}+16k+20 \right)\ge 0$
On multiplying the whole equation with $'-'$ sign to both sides, we get
$\Rightarrow 3{{k}^{2}}+16k+20\le 0$
Now, we can factorize the above equation by splitting 16k as $10k+6k$ so that product of 10k and 6k is equal to the product of first and last term i.e. $3{{k}^{2}}$ and 20. Hence, we can rewrite the above equation as
$\Rightarrow 3{{k}^{2}}+10k+6k+20\le 0$
$\Rightarrow k\left( 3k+10 \right)+2\left( 3k+10 \right)\le 0$
$\Rightarrow \left( k+2 \right)\left( 3k+10 \right)\le 0$
$\Rightarrow 3\left( k+2 \right)\left( k+\dfrac{10}{3} \right)\le 0$
$\Rightarrow \left( k+2 \right)\left( k+\dfrac{10}{3} \right)\le 0$
$\Rightarrow \left( k-\left( -2 \right) \right)\left( k-\left( -\dfrac{10}{3} \right) \right)\le 0$ ……………………………………..(v)
As we know, if $\left( x-\alpha \right)\left( x-\beta \right)\le 0$ then $x\in \left[ \alpha ,\beta \right]$ , where $\alpha <\beta $
Hence, we get values of k from the equation (v) as
$\Rightarrow k\in \left[ -\dfrac{10}{3},-2 \right]$ ……………………………………(vi)
Now, as we know $t={{\sin }^{2}}x$ and we know range of $\sin x$ is given as $\sin x\in \left[ -1,1 \right]$ $\Rightarrow -1\le \sin x\le 1$
So, we get $0\le {{\sin }^{2}}x\le 1$
Hence, value of t will lie in $\left[ 0,1 \right]$ .So, from equation (iv) we get
$0\le t\le 1$
$0\le \dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}\le 1$
Multiplying while equation by 2, we get
$0\le \left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}\le 2$
Adding $-k-2$ to all the sides of equation, we get
$\Rightarrow -k-2\le k+2-k-2\pm \sqrt{-3{{k}^{2}}-16k-20}\le 2-k-2$
$\Rightarrow -k-2\le \pm \sqrt{-3{{k}^{2}}-16k-20}\le -k$
On squaring the whole equation, we get the above equation as
$\Rightarrow {{\left( -k-2 \right)}^{2}}\le {{\left( \pm \sqrt{-3{{k}^{2}}-16k-20} \right)}^{2}}\le {{\left( -k \right)}^{2}}$
$\Rightarrow {{k}^{2}}+4k+4\le -3{{k}^{2}}-16k-20\le {{k}^{2}}$ …………………………………………………..(vii)
Now, taking the first two terms of the above equation, we get
${{k}^{2}}+4k+4\le -3{{k}^{2}}-16k-20$
${{k}^{2}}+4k+4+3{{k}^{2}}+16k+20\le 0$
$4{{k}^{2}}+20k+24\le 0$
On dividing the whole equation by 4, we get
${{k}^{2}}+5k+6\le 0$
Factorizing the above equation, we get
$\Rightarrow {{k}^{2}}+3k+2k+6\le 0$
$\Rightarrow k\left( k+3 \right)+2\left( k+3 \right)\le 0$
$\Rightarrow \left( k+2 \right)\left( k+3 \right)\le 0$
$\Rightarrow \left( k-\left( -2 \right) \right)\left( k-\left( -3 \right) \right)\le 0$ …………………………………..(viii)
As, we know if $\left( x-\alpha \right)\left( x-\beta \right)\le 0$ then $x\in \left[ \alpha ,\beta \right]$ , where $\alpha <\beta $
Hence, we get value of k from equation (viii), we get
$k\in \left[ -3,-2 \right]$
Now, taking last two terms of equation (vii), we get
$-3{{k}^{2}}-16k-20\le {{k}^{2}}$
$0\le {{k}^{2}}+3{{k}^{2}}+16k+20$
$4{{k}^{2}}+16k+20\ge 0$
On dividing the whole equation by 4, we get
${{k}^{2}}+4k+5\ge 0$ …………………………………….(ix)
Now, as we know discriminant of any quadratic $a{{x}^{2}}+bx+c=0$ is given as
$D={{b}^{2}}-4ac$
If roots are real, then $D\ge 0$ and if roots are imaginary, the $D<0$ .
Now, discriminant of equation (ix) is given as
$\Rightarrow D={{\left( 4 \right)}^{2}}-4\times 5=16-20=-4$
$\Rightarrow D=-4$ i.e. $D<0$
Hence, roots will not be real so, we cannot factorize equation (ix). So, we can write equation (ix) as
$\Rightarrow {{k}^{2}}+4k+4+1\ge 0$
$\Rightarrow {{\left( k+2 \right)}^{2}}+1\ge 0$
Now, as ${{\left( k+2 \right)}^{2}}$ will always be positive for any $k\in R$ So, equation (ix) will be true for $k\in R$.
Hence, we need to take intersection of $k\in \left[ \dfrac{-10}{3},-2 \right]$ and $k\in \left[ -3,-2 \right]$ and $k\in R$ .
Hence, we get the intersection of them as $k\in \left[ -3,-2 \right]$ .
Hence, option (D) is the correct answer.
Note: One may use only $D={{b}^{2}}-4ac>0$ to get the range of k for having real roots of the given equation, which is wrong. As ${{\sin }^{2}}x$ has a fixed range from 0 to 1. So, finding roots of the given expression will only help to get possible values of k. So, be careful with it.
As ${{\sin }^{2}}x$ has two possible values in the solution. So, one may think there are two possible inequalities, one when we take positive sign of $\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}$ and another using negative sign of the above term. It will be a lengthier approach, so put $\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}$ from 0 to 1. It will be less time taking. So, be careful with this step.
Recently Updated Pages
Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Valmiki National Park?

Valency of Carbon?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

