
If the equation ${{\left( 1+i\sqrt{3} \right)}^{9}}=a+ib$ holds true, then b is equal to
(a) 1
(b) 256
(c) 0
(d) ${{9}^{3}}$
Answer
597.9k+ views
Hint:Start by converting the complex number $1+i\sqrt{3}$ to its complex form, i.e., to the form $r\left( \cos \theta +i\sin \theta \right)$ where r is the modulus and $\theta $ is the argument. Now further convert it to its exponential form, i.e., $r{{e}^{i\theta }}$ form and substitute in the equation given in the question. Convert the LHS back to polar form and equate the imaginary of LHS with b and give a report the answer.
Complete step-by-step solution -
Let us start by converting the complex number $1+i\sqrt{3}$ to its complex form, i.e., to the form $r\left( \cos \theta +i\sin \theta \right)$ where r is the modulus and $\theta $ is the argument. To convert it to this form, we will divide and multiply the expression by 2. On doing so, we get
$2\left( \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right)$
Now we know that $\cos \dfrac{\pi }{3}=\dfrac{1}{2}\text{ and sin}\dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$ . Using this in our expression, we get
$2\left( \cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \right)$
So, for this r=2 and $\theta =\dfrac{\pi }{3}$ . So, if we convert it to exponential form, i.e., $r{{e}^{i\theta }}$ form we get
$2\left( \cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \right)=2{{e}^{i\dfrac{\pi }{3}}}$
So, we can say that $1+i\sqrt{3}=2{{e}^{i\dfrac{\pi }{3}}}$ .So, if we substitute this in the equation given in the question, we get
${{\left( 1+i\sqrt{3} \right)}^{9}}=a+ib$
$\Rightarrow {{\left( 2{{e}^{i\dfrac{\pi }{3}}} \right)}^{9}}=a+ib$
$\Rightarrow {{2}^{9}}{{e}^{i\dfrac{\pi }{3}\times 9}}=a+ib$
$\Rightarrow {{2}^{9}}{{e}^{i\left( 3\pi \right)}}=a+ib$
For the complex number ${{2}^{9}}{{e}^{i\left( 3\pi \right)}}$ , $r={{2}^{9}}$ and $\theta =3\pi $ . So, if we convert it to polar form, we get
${{2}^{9}}\left( \cos 3\pi +i\sin 3\pi \right)=a+ib$
Now we know that the value of sine for odd multiple of $\pi $ is 0 and the value of cosine for odd multiple of $\pi $ is -1.
${{2}^{9}}\left( -1+i\times 0 \right)=a+ib$
$\Rightarrow -{{2}^{9}}=a+ib$
As the imaginary part of the LHS is zero, so the value of b is equal to 0.
Hence, the answer to the above question is option (c).
Note: Remember that the modulus r of the complex number x+iy is given by $\sqrt{{{x}^{2}}+{{y}^{2}}}$ and $\sin \theta =\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\text{ and cos}\theta \text{=}\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ . Also, the signs of $\sin \theta \text{ and cos}\theta $ decides the quadrant in which the argument lies. The argument and modulus for the polar form and exponential forms are the same. If you want you can remember the formula that $\left( \operatorname{cosA}+isinA \right)\left( \cos B+i\sin B \right)\left( \operatorname{cosC}+i\operatorname{sinC} \right)=\cos \left( A+B+C \right)+i\sin \left( A+B+C \right)$ , so for the above question you can directly ${{\left( 1+i\sqrt{3} \right)}^{9}}={{2}^{9}}{{\left( \cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \right)}^{9}}={{2}^{9}}\left( \cos \dfrac{9\times \pi }{3}+i\sin \dfrac{9\times \pi }{3} \right)$ , removing the step of converting it to exponential form.
Complete step-by-step solution -
Let us start by converting the complex number $1+i\sqrt{3}$ to its complex form, i.e., to the form $r\left( \cos \theta +i\sin \theta \right)$ where r is the modulus and $\theta $ is the argument. To convert it to this form, we will divide and multiply the expression by 2. On doing so, we get
$2\left( \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right)$
Now we know that $\cos \dfrac{\pi }{3}=\dfrac{1}{2}\text{ and sin}\dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$ . Using this in our expression, we get
$2\left( \cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \right)$
So, for this r=2 and $\theta =\dfrac{\pi }{3}$ . So, if we convert it to exponential form, i.e., $r{{e}^{i\theta }}$ form we get
$2\left( \cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \right)=2{{e}^{i\dfrac{\pi }{3}}}$
So, we can say that $1+i\sqrt{3}=2{{e}^{i\dfrac{\pi }{3}}}$ .So, if we substitute this in the equation given in the question, we get
${{\left( 1+i\sqrt{3} \right)}^{9}}=a+ib$
$\Rightarrow {{\left( 2{{e}^{i\dfrac{\pi }{3}}} \right)}^{9}}=a+ib$
$\Rightarrow {{2}^{9}}{{e}^{i\dfrac{\pi }{3}\times 9}}=a+ib$
$\Rightarrow {{2}^{9}}{{e}^{i\left( 3\pi \right)}}=a+ib$
For the complex number ${{2}^{9}}{{e}^{i\left( 3\pi \right)}}$ , $r={{2}^{9}}$ and $\theta =3\pi $ . So, if we convert it to polar form, we get
${{2}^{9}}\left( \cos 3\pi +i\sin 3\pi \right)=a+ib$
Now we know that the value of sine for odd multiple of $\pi $ is 0 and the value of cosine for odd multiple of $\pi $ is -1.
${{2}^{9}}\left( -1+i\times 0 \right)=a+ib$
$\Rightarrow -{{2}^{9}}=a+ib$
As the imaginary part of the LHS is zero, so the value of b is equal to 0.
Hence, the answer to the above question is option (c).
Note: Remember that the modulus r of the complex number x+iy is given by $\sqrt{{{x}^{2}}+{{y}^{2}}}$ and $\sin \theta =\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\text{ and cos}\theta \text{=}\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ . Also, the signs of $\sin \theta \text{ and cos}\theta $ decides the quadrant in which the argument lies. The argument and modulus for the polar form and exponential forms are the same. If you want you can remember the formula that $\left( \operatorname{cosA}+isinA \right)\left( \cos B+i\sin B \right)\left( \operatorname{cosC}+i\operatorname{sinC} \right)=\cos \left( A+B+C \right)+i\sin \left( A+B+C \right)$ , so for the above question you can directly ${{\left( 1+i\sqrt{3} \right)}^{9}}={{2}^{9}}{{\left( \cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \right)}^{9}}={{2}^{9}}\left( \cos \dfrac{9\times \pi }{3}+i\sin \dfrac{9\times \pi }{3} \right)$ , removing the step of converting it to exponential form.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

