
If the effective length of a simple pendulum is equal to the radius of the Earth $\left( R \right)$, the time period will be,
A. $T=\pi \sqrt{\dfrac{R}{g}}$
B. $T=2\pi \sqrt{\dfrac{2R}{g}}$
C. $T=2\pi \sqrt{\dfrac{R}{g}}$
D. $T=2\pi \sqrt{\dfrac{R}{2g}}$
Answer
587.4k+ views
Hint: This problem can be solved by using the formula for the time period of the pendulum, when the effective length of the pendulum is comparable to the radius of the Earth. By using this formula and plugging in the effective length of the pendulum as given in the question, we can get the required time period.
Formula used:
For a pendulum with effective length $l$, comparable to the radius of the earth $R$, the time period $T$ is given by
$T=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{1}{l}+\dfrac{1}{R} \right)}}$
where $g$ is the acceleration due to gravity.
Complete step by step answer:
When the effective length of a pendulum is comparable to the radius of the earth, then its tangential acceleration cannot be considered the same throughout its motion, since the value of acceleration due to gravity $g$ varies with height above the surface of the earth.
Hence, a different general formula exists for the time period in this case.
For a pendulum with effective length $l$, comparable to the radius of the earth $R$, the time period $T$ is given by
$T=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{1}{l}+\dfrac{1}{R} \right)}}$ --(1)
where $g$ is the acceleration due to gravity.
Now, let us analyze the question.
The radius of the earth is $R$
Let the required time period of the pendulum be $T$.
We are given the effective length of the pendulum $\left( l \right)$ is equal to the radius of the earth. Hence,
$l=R$
Therefore, putting this value and using equation (1), we get,
$T=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{1}{R}+\dfrac{1}{R} \right)}}=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{2}{R} \right)}}=2\pi \sqrt{\dfrac{R}{2g}}$
Hence, the time period of the pendulum is $2\pi \sqrt{\dfrac{R}{2g}}$.
Therefore, the correct option is D) $T=2\pi \sqrt{\dfrac{R}{2g}}$.
Note: The general formula (1) for the time period of a pendulum actually becomes the well known formula for the time period of a pendulum, that is, $T=2\pi \sqrt{\dfrac{l}{g}}$. This happens when $l$ is so small in comparison to $R$ that $\dfrac{1}{l}\gg \dfrac{1}{R}$. Hence, it follows that $\dfrac{1}{l}+\dfrac{1}{R}\approx \dfrac{1}{l}$. This approximation leads to the well known formula for the time period of a simple pendulum.
Therefore, students must be careful and judge which formula must be used after analyzing the question. If the effective length of the pendulum is comparable to the radius of the earth, then the student should employ formula (1) and not the well-known approximation. Doing otherwise, will lead to an error in the answer.
Formula used:
For a pendulum with effective length $l$, comparable to the radius of the earth $R$, the time period $T$ is given by
$T=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{1}{l}+\dfrac{1}{R} \right)}}$
where $g$ is the acceleration due to gravity.
Complete step by step answer:
When the effective length of a pendulum is comparable to the radius of the earth, then its tangential acceleration cannot be considered the same throughout its motion, since the value of acceleration due to gravity $g$ varies with height above the surface of the earth.
Hence, a different general formula exists for the time period in this case.
For a pendulum with effective length $l$, comparable to the radius of the earth $R$, the time period $T$ is given by
$T=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{1}{l}+\dfrac{1}{R} \right)}}$ --(1)
where $g$ is the acceleration due to gravity.
Now, let us analyze the question.
The radius of the earth is $R$
Let the required time period of the pendulum be $T$.
We are given the effective length of the pendulum $\left( l \right)$ is equal to the radius of the earth. Hence,
$l=R$
Therefore, putting this value and using equation (1), we get,
$T=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{1}{R}+\dfrac{1}{R} \right)}}=2\pi \sqrt{\dfrac{1}{g\left( \dfrac{2}{R} \right)}}=2\pi \sqrt{\dfrac{R}{2g}}$
Hence, the time period of the pendulum is $2\pi \sqrt{\dfrac{R}{2g}}$.
Therefore, the correct option is D) $T=2\pi \sqrt{\dfrac{R}{2g}}$.
Note: The general formula (1) for the time period of a pendulum actually becomes the well known formula for the time period of a pendulum, that is, $T=2\pi \sqrt{\dfrac{l}{g}}$. This happens when $l$ is so small in comparison to $R$ that $\dfrac{1}{l}\gg \dfrac{1}{R}$. Hence, it follows that $\dfrac{1}{l}+\dfrac{1}{R}\approx \dfrac{1}{l}$. This approximation leads to the well known formula for the time period of a simple pendulum.
Therefore, students must be careful and judge which formula must be used after analyzing the question. If the effective length of the pendulum is comparable to the radius of the earth, then the student should employ formula (1) and not the well-known approximation. Doing otherwise, will lead to an error in the answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

