
If the edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors \[\hat a\], \[\hat b\] and \[\hat c\] such that \[\hat a \cdot \hat b = \hat b \cdot \hat c = \hat c \cdot \hat a = \dfrac{1}{2}\]. Find the volume of the parallelepiped.
Answer
447k+ views
Hint: The edges of a parallelepiped are represented by vectors \[\hat a\], \[\hat b\]and \[\hat c\]. We will use here the formula for the volume of a parallelepiped. First, we will find all the unit vectors. Using the value of unit vectors we will find the determinant. Then we will simplify the determinant to find the volume of the parallelepiped.
Formulas used:
We will use the following formulas to solve the question:
1. \[\vec p.\vec q = \left| p \right|\left| q \right|\cos \theta = \vec q.\vec p\] where \[\theta \] is the angle between vectors \[\vec p\] and \[\vec q\] .
2. \[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{c}}{\hat a \cdot \hat a}&{\hat a \cdot \hat b}&{\hat a \cdot \hat c} \\{\hat b \cdot \hat a}&{\hat b \cdot \hat b}&{\hat b \cdot \hat c} \\{\hat c \cdot \hat a}&{\hat c \cdot \hat b}&{\hat c \cdot \hat c}\end{array}} \right|\]
3. \[\left| {\begin{array}{*{20}{l}}d&e&f \\g&h&i \\j&k&l\end{array}} \right| = d\left( {hl - ik} \right) - e\left( {gl - ij} \right) + f\left( {gk - hj} \right)\]
Complete step by step answer:
The volume of a parallelepiped with coterminous edges \[\hat a\], \[\hat b\] and \[\hat c\] is given by \[\left[ {\hat a\hat b\hat c} \right]\] (the scalar triple product or box product of vectors \[\hat a\], \[\hat b\]and \[\hat c\]).
As \[\hat a\], \[\hat b\] and \[\hat c\] are unit vectors, their magnitude is 1. Therefore,
\[\begin{array}{l}\hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = \left| 1 \right|\left| 1 \right|{\mathop{\text cos}\nolimits} 0 \\ \hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = 1{\text{ }}\left( 1 \right)\end{array}\]
Let us substitute equation (1) and the values given in the question in the second formula.
\[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{l}}1&{\dfrac{1}{2}}&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&1&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&{\dfrac{1}{2}}&1\end{array}} \right|\]
Here it is given that the edges are of unit length.
Let us substitute \[d = h = l = 1\] and \[e = f = g = i = j = k = \dfrac{1}{2}\] in the third formula.
$ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}$
\[ \left[ {\hat a\hat b\hat c} \right] = 1\left( {\dfrac{3}{4}} \right) - \dfrac{1}{2}\left( {\dfrac{1}{4}} \right) + \dfrac{1}{2} \left( { - \dfrac{1}{4}} \right) \]
$ \left[ {\hat a \hat b \hat c} \right] = \dfrac{3}{4} - \dfrac{1}{8} - \dfrac{1}{8}$
Let us simplify the equation:
\[\begin{array}{l}\left[ {\hat a\hat b\hat c} \right] = \dfrac{{6 - 1 - 1}}{8} \\\left[ {\hat a\hat b\hat c} \right] = \dfrac{4}{8} \\ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}\end{array}\]
Therefore, we found that the volume of the parallelepiped is given by \[\dfrac{1}{4}\].
Note:
1. Cyclic permutation of three vectors does not change the value of the scalar triple product; that is \[\left[ {\hat a\hat b\hat c} \right] = \left[ {\hat b\hat a\hat c} \right] = \left[ {\hat c\hat a\hat b} \right]\]. We must be careful about the fact that \[\left[ {\hat a\hat b\hat c} \right] \ne \left[ {\hat a\hat c\hat b} \right]\] rather, \[\left[ {\hat a\hat b\hat c} \right] = - \left[ {\hat a\hat c\hat b} \right]\].
2. If \[\vec a\], \[\vec b\] and \[\vec c\] are any three vectors, then the scalar product of \[\vec a\] and \[\left( {\vec b \times \vec c} \right)\], that is \[\vec a \cdot \left( {\vec b \times \vec c} \right)\]is called the scalar triple product of \[\vec a\], \[\vec b\] and \[\vec c\] in the same order and is denoted by \[\left[ {\vec a\vec b\vec c} \right]\].
Formulas used:
We will use the following formulas to solve the question:
1. \[\vec p.\vec q = \left| p \right|\left| q \right|\cos \theta = \vec q.\vec p\] where \[\theta \] is the angle between vectors \[\vec p\] and \[\vec q\] .
2. \[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{c}}{\hat a \cdot \hat a}&{\hat a \cdot \hat b}&{\hat a \cdot \hat c} \\{\hat b \cdot \hat a}&{\hat b \cdot \hat b}&{\hat b \cdot \hat c} \\{\hat c \cdot \hat a}&{\hat c \cdot \hat b}&{\hat c \cdot \hat c}\end{array}} \right|\]
3. \[\left| {\begin{array}{*{20}{l}}d&e&f \\g&h&i \\j&k&l\end{array}} \right| = d\left( {hl - ik} \right) - e\left( {gl - ij} \right) + f\left( {gk - hj} \right)\]
Complete step by step answer:
The volume of a parallelepiped with coterminous edges \[\hat a\], \[\hat b\] and \[\hat c\] is given by \[\left[ {\hat a\hat b\hat c} \right]\] (the scalar triple product or box product of vectors \[\hat a\], \[\hat b\]and \[\hat c\]).
As \[\hat a\], \[\hat b\] and \[\hat c\] are unit vectors, their magnitude is 1. Therefore,
\[\begin{array}{l}\hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = \left| 1 \right|\left| 1 \right|{\mathop{\text cos}\nolimits} 0 \\ \hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = 1{\text{ }}\left( 1 \right)\end{array}\]
Let us substitute equation (1) and the values given in the question in the second formula.
\[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{l}}1&{\dfrac{1}{2}}&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&1&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&{\dfrac{1}{2}}&1\end{array}} \right|\]
Here it is given that the edges are of unit length.
Let us substitute \[d = h = l = 1\] and \[e = f = g = i = j = k = \dfrac{1}{2}\] in the third formula.
$ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}$
\[ \left[ {\hat a\hat b\hat c} \right] = 1\left( {\dfrac{3}{4}} \right) - \dfrac{1}{2}\left( {\dfrac{1}{4}} \right) + \dfrac{1}{2} \left( { - \dfrac{1}{4}} \right) \]
$ \left[ {\hat a \hat b \hat c} \right] = \dfrac{3}{4} - \dfrac{1}{8} - \dfrac{1}{8}$
Let us simplify the equation:
\[\begin{array}{l}\left[ {\hat a\hat b\hat c} \right] = \dfrac{{6 - 1 - 1}}{8} \\\left[ {\hat a\hat b\hat c} \right] = \dfrac{4}{8} \\ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}\end{array}\]
Therefore, we found that the volume of the parallelepiped is given by \[\dfrac{1}{4}\].
Note:
1. Cyclic permutation of three vectors does not change the value of the scalar triple product; that is \[\left[ {\hat a\hat b\hat c} \right] = \left[ {\hat b\hat a\hat c} \right] = \left[ {\hat c\hat a\hat b} \right]\]. We must be careful about the fact that \[\left[ {\hat a\hat b\hat c} \right] \ne \left[ {\hat a\hat c\hat b} \right]\] rather, \[\left[ {\hat a\hat b\hat c} \right] = - \left[ {\hat a\hat c\hat b} \right]\].
2. If \[\vec a\], \[\vec b\] and \[\vec c\] are any three vectors, then the scalar product of \[\vec a\] and \[\left( {\vec b \times \vec c} \right)\], that is \[\vec a \cdot \left( {\vec b \times \vec c} \right)\]is called the scalar triple product of \[\vec a\], \[\vec b\] and \[\vec c\] in the same order and is denoted by \[\left[ {\vec a\vec b\vec c} \right]\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

Which of the following is most electronegative A Carbon class 11 chemistry CBSE
