
If the edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors \[\hat a\], \[\hat b\] and \[\hat c\] such that \[\hat a \cdot \hat b = \hat b \cdot \hat c = \hat c \cdot \hat a = \dfrac{1}{2}\]. Find the volume of the parallelepiped.
Answer
529.5k+ views
Hint: The edges of a parallelepiped are represented by vectors \[\hat a\], \[\hat b\]and \[\hat c\]. We will use here the formula for the volume of a parallelepiped. First, we will find all the unit vectors. Using the value of unit vectors we will find the determinant. Then we will simplify the determinant to find the volume of the parallelepiped.
Formulas used:
We will use the following formulas to solve the question:
1. \[\vec p.\vec q = \left| p \right|\left| q \right|\cos \theta = \vec q.\vec p\] where \[\theta \] is the angle between vectors \[\vec p\] and \[\vec q\] .
2. \[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{c}}{\hat a \cdot \hat a}&{\hat a \cdot \hat b}&{\hat a \cdot \hat c} \\{\hat b \cdot \hat a}&{\hat b \cdot \hat b}&{\hat b \cdot \hat c} \\{\hat c \cdot \hat a}&{\hat c \cdot \hat b}&{\hat c \cdot \hat c}\end{array}} \right|\]
3. \[\left| {\begin{array}{*{20}{l}}d&e&f \\g&h&i \\j&k&l\end{array}} \right| = d\left( {hl - ik} \right) - e\left( {gl - ij} \right) + f\left( {gk - hj} \right)\]
Complete step by step answer:
The volume of a parallelepiped with coterminous edges \[\hat a\], \[\hat b\] and \[\hat c\] is given by \[\left[ {\hat a\hat b\hat c} \right]\] (the scalar triple product or box product of vectors \[\hat a\], \[\hat b\]and \[\hat c\]).
As \[\hat a\], \[\hat b\] and \[\hat c\] are unit vectors, their magnitude is 1. Therefore,
\[\begin{array}{l}\hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = \left| 1 \right|\left| 1 \right|{\mathop{\text cos}\nolimits} 0 \\ \hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = 1{\text{ }}\left( 1 \right)\end{array}\]
Let us substitute equation (1) and the values given in the question in the second formula.
\[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{l}}1&{\dfrac{1}{2}}&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&1&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&{\dfrac{1}{2}}&1\end{array}} \right|\]
Here it is given that the edges are of unit length.
Let us substitute \[d = h = l = 1\] and \[e = f = g = i = j = k = \dfrac{1}{2}\] in the third formula.
$ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}$
\[ \left[ {\hat a\hat b\hat c} \right] = 1\left( {\dfrac{3}{4}} \right) - \dfrac{1}{2}\left( {\dfrac{1}{4}} \right) + \dfrac{1}{2} \left( { - \dfrac{1}{4}} \right) \]
$ \left[ {\hat a \hat b \hat c} \right] = \dfrac{3}{4} - \dfrac{1}{8} - \dfrac{1}{8}$
Let us simplify the equation:
\[\begin{array}{l}\left[ {\hat a\hat b\hat c} \right] = \dfrac{{6 - 1 - 1}}{8} \\\left[ {\hat a\hat b\hat c} \right] = \dfrac{4}{8} \\ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}\end{array}\]
Therefore, we found that the volume of the parallelepiped is given by \[\dfrac{1}{4}\].
Note:
1. Cyclic permutation of three vectors does not change the value of the scalar triple product; that is \[\left[ {\hat a\hat b\hat c} \right] = \left[ {\hat b\hat a\hat c} \right] = \left[ {\hat c\hat a\hat b} \right]\]. We must be careful about the fact that \[\left[ {\hat a\hat b\hat c} \right] \ne \left[ {\hat a\hat c\hat b} \right]\] rather, \[\left[ {\hat a\hat b\hat c} \right] = - \left[ {\hat a\hat c\hat b} \right]\].
2. If \[\vec a\], \[\vec b\] and \[\vec c\] are any three vectors, then the scalar product of \[\vec a\] and \[\left( {\vec b \times \vec c} \right)\], that is \[\vec a \cdot \left( {\vec b \times \vec c} \right)\]is called the scalar triple product of \[\vec a\], \[\vec b\] and \[\vec c\] in the same order and is denoted by \[\left[ {\vec a\vec b\vec c} \right]\].
Formulas used:
We will use the following formulas to solve the question:
1. \[\vec p.\vec q = \left| p \right|\left| q \right|\cos \theta = \vec q.\vec p\] where \[\theta \] is the angle between vectors \[\vec p\] and \[\vec q\] .
2. \[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{c}}{\hat a \cdot \hat a}&{\hat a \cdot \hat b}&{\hat a \cdot \hat c} \\{\hat b \cdot \hat a}&{\hat b \cdot \hat b}&{\hat b \cdot \hat c} \\{\hat c \cdot \hat a}&{\hat c \cdot \hat b}&{\hat c \cdot \hat c}\end{array}} \right|\]
3. \[\left| {\begin{array}{*{20}{l}}d&e&f \\g&h&i \\j&k&l\end{array}} \right| = d\left( {hl - ik} \right) - e\left( {gl - ij} \right) + f\left( {gk - hj} \right)\]
Complete step by step answer:
The volume of a parallelepiped with coterminous edges \[\hat a\], \[\hat b\] and \[\hat c\] is given by \[\left[ {\hat a\hat b\hat c} \right]\] (the scalar triple product or box product of vectors \[\hat a\], \[\hat b\]and \[\hat c\]).
As \[\hat a\], \[\hat b\] and \[\hat c\] are unit vectors, their magnitude is 1. Therefore,
\[\begin{array}{l}\hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = \left| 1 \right|\left| 1 \right|{\mathop{\text cos}\nolimits} 0 \\ \hat a \cdot \hat a = \hat b \cdot \hat b = \hat c \cdot \hat c = 1{\text{ }}\left( 1 \right)\end{array}\]
Let us substitute equation (1) and the values given in the question in the second formula.
\[\left[ {\hat a\hat b\hat c} \right] = \left| {\begin{array}{*{20}{l}}1&{\dfrac{1}{2}}&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&1&{\dfrac{1}{2}} \\{\dfrac{1}{2}}&{\dfrac{1}{2}}&1\end{array}} \right|\]
Here it is given that the edges are of unit length.
Let us substitute \[d = h = l = 1\] and \[e = f = g = i = j = k = \dfrac{1}{2}\] in the third formula.
$ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}$
\[ \left[ {\hat a\hat b\hat c} \right] = 1\left( {\dfrac{3}{4}} \right) - \dfrac{1}{2}\left( {\dfrac{1}{4}} \right) + \dfrac{1}{2} \left( { - \dfrac{1}{4}} \right) \]
$ \left[ {\hat a \hat b \hat c} \right] = \dfrac{3}{4} - \dfrac{1}{8} - \dfrac{1}{8}$
Let us simplify the equation:
\[\begin{array}{l}\left[ {\hat a\hat b\hat c} \right] = \dfrac{{6 - 1 - 1}}{8} \\\left[ {\hat a\hat b\hat c} \right] = \dfrac{4}{8} \\ \left[ {\hat a\hat b\hat c} \right] = \dfrac{1}{4}\end{array}\]
Therefore, we found that the volume of the parallelepiped is given by \[\dfrac{1}{4}\].
Note:
1. Cyclic permutation of three vectors does not change the value of the scalar triple product; that is \[\left[ {\hat a\hat b\hat c} \right] = \left[ {\hat b\hat a\hat c} \right] = \left[ {\hat c\hat a\hat b} \right]\]. We must be careful about the fact that \[\left[ {\hat a\hat b\hat c} \right] \ne \left[ {\hat a\hat c\hat b} \right]\] rather, \[\left[ {\hat a\hat b\hat c} \right] = - \left[ {\hat a\hat c\hat b} \right]\].
2. If \[\vec a\], \[\vec b\] and \[\vec c\] are any three vectors, then the scalar product of \[\vec a\] and \[\left( {\vec b \times \vec c} \right)\], that is \[\vec a \cdot \left( {\vec b \times \vec c} \right)\]is called the scalar triple product of \[\vec a\], \[\vec b\] and \[\vec c\] in the same order and is denoted by \[\left[ {\vec a\vec b\vec c} \right]\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

