
If the digits at ten’s and hundred’s places in ${\left( {11} \right)^{2016}}$ are x and y respectively, then the ordered pair (x, y) is equal to-
A.$\left( {1,6} \right)$
B.$\left( {6,1} \right)$
C.$\left( {8,1} \right)$
D.$\left( {1,8} \right)$
Answer
592.5k+ views
Hint: We can use expression of binomial theorem which is given as-
\[ \Rightarrow {\left( {x + a} \right)^n} = {}^n{C_0}{x^n}{a^0} + {}^n{C_1}{x^{n - 1}}{a^1} + ... + {}^n{C_n}{x^{n - n}}{a^n}\] Where,${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$ and n is positive integral.
Take out the common terms in the expression and solve to find the value of x and y.
Complete step-by-step answer:
Given, the ten’s digit in ${\left( {11} \right)^{2016}}$=x
And the one’s digit in ${\left( {11} \right)^{2016}}$=y
We have to find the value of ordered pair (x, y)
We can write \[{\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}}\] -- (i)
Now using expression of binomial theorem-
\[ \Rightarrow {\left( {x + a} \right)^n} = {}^n{C_0}{x^n}{a^0} + {}^n{C_1}{x^{n - 1}}{a^1} + ... + {}^n{C_n}{x^{n - n}}{a^n}\] Where,${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$ and n is positive integral.
On putting the values in formula we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {}^{2016}{C_0}{.10^{2016}} + {}^{2016}{C_1}{.10^{2016 - 1}}{1^1} + ... + {}^{2016}{C_{2014}}{.10^{2016 - 2014}}{1^{2014}} + {}^{2016}{C_{2015}}{.10^{2016 - 2015}}{1^{2015}} + {}^{2016}{C_{2016}}{.10^{2016 - 2016}}{1^{2016}}\] On simplifying we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {}^{2016}{C_0}{.10^{2016}} + {}^{2016}{C_1}{.10^{2015}} + ... + {}^{2016}{C_{2014}}{.10^2} + {}^{2016}{C_{2015}}.10 + {}^{2016}{C_{2016}}\]
We know that ${}^n{C_0} = {}^n{C_n} = 1$
Then on applying this in the above equation, we get
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^{2016}} + {}^{2016}{C_1}{.10^{2015}} + ... + {}^{2016}{C_{2014}}{.10^2} + {}^{2016}{C_{2015}}.10 + 1\]
On using formula ${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$
We get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^{2016}} + \dfrac{{2016!}}{{2015!}}{.10^{2015}} + ... + \dfrac{{2016!}}{{2014!2}}{.10^2} + \dfrac{{2016!}}{{2015!}}.10 + 1\]
On taking ${10^3}$ common from every term except last three term (as it is not common in them) we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + \left( {\dfrac{{2016 \times 2015}}{2}} \right) \times {10^2} + \left( {2016 \times 10} \right) + 1\] -- (ii)
Where $\lambda = {10^{2013}} + \dfrac{{2016!}}{{2015!}}{.10^{2012}} + ... + \dfrac{{2016!}}{{2013!3!}}$
On solving eq. (i) further, we get
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + \left( {2015 \times 1008} \right) \times 100 + 20160 + 1\]
On multiplication we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + 2,031,120 \times 100 + 20161\]
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + 203,112,000 + 20161\]
On adding the last two terms we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + 203,122,161\] -- (iii)
Here since the first term is multiple of ${10^3}$ so this means that whatever the value of $\lambda $ be, it will not affect the last three digits of the second term when added to it.
So the hundred’s ten’s and one’s digits are fixed. And it was given that the ten’s digit is x and one’s digit is y, then
$ \Rightarrow x = 6$ and
$ \Rightarrow y = 1$
So the ordered pair (x, y) will be $(6,1)$
Hence, the correct answer is ‘B’.
Note: In this question if we exchange the place of $10$ and $1$ in eq. (i), and then apply the binomial theorem and solve in the same method as above, the terms of the equation (iii) will also be exchanged. The answer we will get will be the same.
\[ \Rightarrow {\left( {x + a} \right)^n} = {}^n{C_0}{x^n}{a^0} + {}^n{C_1}{x^{n - 1}}{a^1} + ... + {}^n{C_n}{x^{n - n}}{a^n}\] Where,${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$ and n is positive integral.
Take out the common terms in the expression and solve to find the value of x and y.
Complete step-by-step answer:
Given, the ten’s digit in ${\left( {11} \right)^{2016}}$=x
And the one’s digit in ${\left( {11} \right)^{2016}}$=y
We have to find the value of ordered pair (x, y)
We can write \[{\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}}\] -- (i)
Now using expression of binomial theorem-
\[ \Rightarrow {\left( {x + a} \right)^n} = {}^n{C_0}{x^n}{a^0} + {}^n{C_1}{x^{n - 1}}{a^1} + ... + {}^n{C_n}{x^{n - n}}{a^n}\] Where,${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$ and n is positive integral.
On putting the values in formula we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {}^{2016}{C_0}{.10^{2016}} + {}^{2016}{C_1}{.10^{2016 - 1}}{1^1} + ... + {}^{2016}{C_{2014}}{.10^{2016 - 2014}}{1^{2014}} + {}^{2016}{C_{2015}}{.10^{2016 - 2015}}{1^{2015}} + {}^{2016}{C_{2016}}{.10^{2016 - 2016}}{1^{2016}}\] On simplifying we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {}^{2016}{C_0}{.10^{2016}} + {}^{2016}{C_1}{.10^{2015}} + ... + {}^{2016}{C_{2014}}{.10^2} + {}^{2016}{C_{2015}}.10 + {}^{2016}{C_{2016}}\]
We know that ${}^n{C_0} = {}^n{C_n} = 1$
Then on applying this in the above equation, we get
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^{2016}} + {}^{2016}{C_1}{.10^{2015}} + ... + {}^{2016}{C_{2014}}{.10^2} + {}^{2016}{C_{2015}}.10 + 1\]
On using formula ${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$
We get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^{2016}} + \dfrac{{2016!}}{{2015!}}{.10^{2015}} + ... + \dfrac{{2016!}}{{2014!2}}{.10^2} + \dfrac{{2016!}}{{2015!}}.10 + 1\]
On taking ${10^3}$ common from every term except last three term (as it is not common in them) we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + \left( {\dfrac{{2016 \times 2015}}{2}} \right) \times {10^2} + \left( {2016 \times 10} \right) + 1\] -- (ii)
Where $\lambda = {10^{2013}} + \dfrac{{2016!}}{{2015!}}{.10^{2012}} + ... + \dfrac{{2016!}}{{2013!3!}}$
On solving eq. (i) further, we get
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + \left( {2015 \times 1008} \right) \times 100 + 20160 + 1\]
On multiplication we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + 2,031,120 \times 100 + 20161\]
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + 203,112,000 + 20161\]
On adding the last two terms we get,
\[ \Rightarrow {\left( {11} \right)^{2016}} = {\left( {10 + 1} \right)^{2016}} = {10^3}\lambda + 203,122,161\] -- (iii)
Here since the first term is multiple of ${10^3}$ so this means that whatever the value of $\lambda $ be, it will not affect the last three digits of the second term when added to it.
So the hundred’s ten’s and one’s digits are fixed. And it was given that the ten’s digit is x and one’s digit is y, then
$ \Rightarrow x = 6$ and
$ \Rightarrow y = 1$
So the ordered pair (x, y) will be $(6,1)$
Hence, the correct answer is ‘B’.
Note: In this question if we exchange the place of $10$ and $1$ in eq. (i), and then apply the binomial theorem and solve in the same method as above, the terms of the equation (iii) will also be exchanged. The answer we will get will be the same.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

