Answer
Verified
493.2k+ views
Hint- Use formula of curved surface area of sphere $C.S.A = 4\pi {r^2}$ and also in diameter form like $C.S.A = \pi {d^2}$, d is diameter of sphere.
Let the diameter of the sphere be d.
So, the radius of the sphere is $r = \dfrac{d}{2}$ .
Curved surface area of sphere $ = 4\pi {\left( r \right)^2} = 4\pi {\left( {\dfrac{d}{2}} \right)^2}$
Curved surface area of sphere $ = \pi {d^2}$
The diameter of the sphere decreased by 25%. It means $\dfrac{d}{4}$ subtract from total diameter (d).
So, new diameter D $ = d - \dfrac{d}{4} = \dfrac{{3d}}{4}$
New curved surface area of sphere $ = \pi {D^2}$
$
\Rightarrow \pi {\left( {\dfrac{{3d}}{4}} \right)^2} \\
\Rightarrow \dfrac{{9\pi {d^2}}}{{16}} \\
$
Percentage decrease in C.S.A $ = \dfrac{{\pi {d^2} - \pi {D^2}}}{{\pi {d^2}}} \times 100$
$
\Rightarrow \dfrac{{\pi {d^2} - \dfrac{{9\pi {d^2}}}{{16}}}}{{\pi {d^2}}} \times 100 \\
\Rightarrow \dfrac{{1 - \dfrac{9}{{16}}}}{1} \times 100 \\
\Rightarrow \dfrac{7}{{16}} \times 100 \\
\Rightarrow 43.75\% \\
$
So, the correct option is (a).
Note-Whenever we face such types of problems we use some important points. Like we know decrement in diameter so we use diameter in the formula of curved surface area of sphere rather than radius then after finding new curved surface area we can easily get percentage decreases in curved surface area.
Let the diameter of the sphere be d.
So, the radius of the sphere is $r = \dfrac{d}{2}$ .
Curved surface area of sphere $ = 4\pi {\left( r \right)^2} = 4\pi {\left( {\dfrac{d}{2}} \right)^2}$
Curved surface area of sphere $ = \pi {d^2}$
The diameter of the sphere decreased by 25%. It means $\dfrac{d}{4}$ subtract from total diameter (d).
So, new diameter D $ = d - \dfrac{d}{4} = \dfrac{{3d}}{4}$
New curved surface area of sphere $ = \pi {D^2}$
$
\Rightarrow \pi {\left( {\dfrac{{3d}}{4}} \right)^2} \\
\Rightarrow \dfrac{{9\pi {d^2}}}{{16}} \\
$
Percentage decrease in C.S.A $ = \dfrac{{\pi {d^2} - \pi {D^2}}}{{\pi {d^2}}} \times 100$
$
\Rightarrow \dfrac{{\pi {d^2} - \dfrac{{9\pi {d^2}}}{{16}}}}{{\pi {d^2}}} \times 100 \\
\Rightarrow \dfrac{{1 - \dfrac{9}{{16}}}}{1} \times 100 \\
\Rightarrow \dfrac{7}{{16}} \times 100 \\
\Rightarrow 43.75\% \\
$
So, the correct option is (a).
Note-Whenever we face such types of problems we use some important points. Like we know decrement in diameter so we use diameter in the formula of curved surface area of sphere rather than radius then after finding new curved surface area we can easily get percentage decreases in curved surface area.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths