
If the data \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\] is such that the mean of the first four of these is 11, the mean of the remaining six is 16 and the sum of the square of all these is 2000; the standard deviation of this data is?
(a) 4
(b) 2
(c) \[\sqrt{2}\]
(d) \[2\sqrt{2}\]
Answer
576.3k+ views
Hint: Find the sum of the first four numbers using the information given about the mean of first four numbers. Use the formula: - Mean of first four data = \[\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}}{4}\]. Now, find the sum of the remaining six numbers using the information given about the mean of remaining six numbers. Use the formula: - Mean of remaining six numbers = \[\dfrac{{{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}+{{x}_{10}}}{6}\]. In the next step find the mean of all the 10 numbers using the relation: - \[\overline{x}=\dfrac{1}{10}\sum\limits_{i=1}^{10}{{{x}_{i}}}\], where \[\overline{x}\] is the mean of 10 numbers. Finally, apply the formula for standard deviation given by: - \[\sigma =\sqrt{\dfrac{1}{10}\sum\limits_{i=1}^{10}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}\], to get the answer. Here, ‘\[\sigma \]’ is the notation of standard deviation.
Complete step-by-step solution:
We have been provided with 10 data \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\].
It is given that the mean of the first four numbers is 11. Therefore, applying the formula for mean, we get,
Mean of first four numbers = \[\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}}{4}\]
\[\Rightarrow 44={{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}\] - (i)
Also, it is given that the mean of the remaining six numbers is 16. Therefore, applying the formula for mean in this case, we get,
Mean of remaining six numbers = \[\dfrac{{{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}+{{x}_{10}}}{6}\]
\[\Rightarrow 96={{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}+{{x}_{10}}\] - (ii)
Now, adding equation (i) and (ii), we get,
\[\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}+{{x}_{10}}=96+44\]
This can be written as: -
\[\Rightarrow \sum\limits_{i=1}^{10}{{{x}_{i}}}=140\]
Dividing both sides by 10, we get,
\[\Rightarrow \dfrac{1}{10}\sum\limits_{i=1}^{10}{{{x}_{i}}}=\dfrac{140}{10}\]
\[\Rightarrow \overline{x}=14\] - (iii)
Here, \[\overline{x}\] is the mean of all the ten observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\].
Now, we know that standard deviation for 10 observations is by: - \[\sigma =\sqrt{\dfrac{1}{10}\sum\limits_{i=1}^{10}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}\], where ‘\[\sigma \]’ is the standard deviation.
Therefore, substituting the value of \[\overline{x}\] in the above formula, from equation (iii), we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{1}{10}\sum\limits_{i=1}^{10}{{{\left( {{x}_{i}}-14 \right)}^{2}}}}\]
Applying the identity, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\sum\limits_{i=1}^{10}{\left( {{x}_{i}}^{2}+{{14}^{2}}-28{{x}_{i}} \right)}} \\
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}+}\sum\limits_{i=1}^{10}{196}-28\sum\limits_{i=1}^{10}{{{x}_{i}}} \right]} \\
\end{align}\]
Substituting the value of \[\sum\limits_{i=1}^{10}{{{x}_{i}}}=140\], we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}+}\sum\limits_{i=1}^{10}{196}\times 10-28\times 140 \right]} \\
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}+}1960-3920 \right]} \\
\end{align}\]
\[\Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}-}1960 \right]}\] - (iv)
Now, in the question we have been provided with another information. It is given that sum of square of \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\] is 2000. Therefore, we have,
\[\begin{align}
& \Rightarrow x_{1}^{2}+x_{2}^{2}+.....+x_{10}^{2}=2000 \\
& \Rightarrow \sum\limits_{i=1}^{10}{x_{i}^{2}}=2000 \\
\end{align}\]
Therefore, substituting this value in equation (iv), we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ 2000-1960 \right]} \\
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\times 40} \\
& \Rightarrow \sigma =\sqrt{4} \\
& \Rightarrow \sigma =2 \\
\end{align}\]
Hence, option (b) is the correct answer.
Note: One may note that, we must calculate the mean of all the 10 data \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\]. This is because we need this information to calculate the standard deviation. Now, it is not possible to find the mean of 10 numbers by directly adding the mean of four numbers and mean of six numbers separately. This will be the wrong approach. That is why it is necessary to find the sum of the four numbers and six numbers separately.
Complete step-by-step solution:
We have been provided with 10 data \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\].
It is given that the mean of the first four numbers is 11. Therefore, applying the formula for mean, we get,
Mean of first four numbers = \[\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}}{4}\]
\[\Rightarrow 44={{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}\] - (i)
Also, it is given that the mean of the remaining six numbers is 16. Therefore, applying the formula for mean in this case, we get,
Mean of remaining six numbers = \[\dfrac{{{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}+{{x}_{10}}}{6}\]
\[\Rightarrow 96={{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}+{{x}_{10}}\] - (ii)
Now, adding equation (i) and (ii), we get,
\[\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}+{{x}_{9}}+{{x}_{10}}=96+44\]
This can be written as: -
\[\Rightarrow \sum\limits_{i=1}^{10}{{{x}_{i}}}=140\]
Dividing both sides by 10, we get,
\[\Rightarrow \dfrac{1}{10}\sum\limits_{i=1}^{10}{{{x}_{i}}}=\dfrac{140}{10}\]
\[\Rightarrow \overline{x}=14\] - (iii)
Here, \[\overline{x}\] is the mean of all the ten observations \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\].
Now, we know that standard deviation for 10 observations is by: - \[\sigma =\sqrt{\dfrac{1}{10}\sum\limits_{i=1}^{10}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}\], where ‘\[\sigma \]’ is the standard deviation.
Therefore, substituting the value of \[\overline{x}\] in the above formula, from equation (iii), we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{1}{10}\sum\limits_{i=1}^{10}{{{\left( {{x}_{i}}-14 \right)}^{2}}}}\]
Applying the identity, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\sum\limits_{i=1}^{10}{\left( {{x}_{i}}^{2}+{{14}^{2}}-28{{x}_{i}} \right)}} \\
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}+}\sum\limits_{i=1}^{10}{196}-28\sum\limits_{i=1}^{10}{{{x}_{i}}} \right]} \\
\end{align}\]
Substituting the value of \[\sum\limits_{i=1}^{10}{{{x}_{i}}}=140\], we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}+}\sum\limits_{i=1}^{10}{196}\times 10-28\times 140 \right]} \\
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}+}1960-3920 \right]} \\
\end{align}\]
\[\Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ \sum\limits_{i=1}^{10}{{{x}_{i}}^{2}-}1960 \right]}\] - (iv)
Now, in the question we have been provided with another information. It is given that sum of square of \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\] is 2000. Therefore, we have,
\[\begin{align}
& \Rightarrow x_{1}^{2}+x_{2}^{2}+.....+x_{10}^{2}=2000 \\
& \Rightarrow \sum\limits_{i=1}^{10}{x_{i}^{2}}=2000 \\
\end{align}\]
Therefore, substituting this value in equation (iv), we get,
\[\begin{align}
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\left[ 2000-1960 \right]} \\
& \Rightarrow \sigma =\sqrt{\dfrac{1}{10}\times 40} \\
& \Rightarrow \sigma =\sqrt{4} \\
& \Rightarrow \sigma =2 \\
\end{align}\]
Hence, option (b) is the correct answer.
Note: One may note that, we must calculate the mean of all the 10 data \[{{x}_{1}},{{x}_{2}},.....,{{x}_{10}}\]. This is because we need this information to calculate the standard deviation. Now, it is not possible to find the mean of 10 numbers by directly adding the mean of four numbers and mean of six numbers separately. This will be the wrong approach. That is why it is necessary to find the sum of the four numbers and six numbers separately.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

