If the binomial expansion of ${{\left( 1+ax \right)}^{n}}$ is given as $1+8x+24{{x}^{2}}+......$, then find the value of a and n?
(a) 2, 4
(b) 2, 3
(c) 3, 6
(d) 1, 2.
Answer
Verified
475.8k+ views
Hint: We can see that the binomial expansion ${{\left( 1+ax \right)}^{n}}$ is similar to ${{\left( 1+x \right)}^{n}}$. So, we expand ${{\left( 1+ax \right)}^{n}}$ and compare the coefficients of x and ${{x}^{2}}$ on both sides to get the equations. We solve the equation to get the value of one of the variables. Using the obtained value of the variable, we find the value of the other variable by using one of the equations.
Complete step by step answer:
Given that we have a binomial expansion ${{\left( 1+ax \right)}^{n}}$, given as $1+8x+24{{x}^{2}}+......$. We need to find the values of ‘a’ and ‘n’.
The binomial expansion ${{\left( 1+ax \right)}^{n}}$ is similar to the expansion ${{\left( 1+x \right)}^{n}}$.
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is given as:
${{\left( 1+x \right)}^{n}}=1+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{3}}{{x}^{3}}+........$ ---(1).
We use equation (1), to expand the binomial expansion ${{\left( 1+ax \right)}^{n}}$.
So, the binomial expansion of ${{\left( 1+ax \right)}^{n}}$ is:
${{\left( 1+ax \right)}^{n}}=1+{}^{n}{{C}_{1}}\left( ax \right)+{}^{n}{{C}_{2}}{{\left( ax \right)}^{2}}+{}^{n}{{C}_{3}}{{\left( ax \right)}^{3}}+......$ ---(2).
According to the problem, the binomial expansion of ${{\left( 1+ax \right)}^{n}}$ is given as $1+8x+24{{x}^{2}}+......$ ---(3).
Using equations (2) and (3), we get
$1+8x+24{{x}^{2}}+......$ = $1+{}^{n}{{C}_{1}}\left( ax \right)+{}^{n}{{C}_{2}}{{\left( ax \right)}^{2}}+{}^{n}{{C}_{3}}{{\left( ax \right)}^{3}}+......$ .
$1+8x+24{{x}^{2}}+......$ = $1+{}^{n}{{C}_{1}}.a.x+{}^{n}{{C}_{2}}.{{a}^{2}}.{{x}^{2}}+{}^{n}{{C}_{3}}.{{a}^{3}}.{{x}^{3}}+......$ ---(4).
Comparing coefficients of ‘x’ terms on both sides, we get ${}^{n}{{C}_{1}}.a=8$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n\times \left( n-1 \right)\times \left( n-2 \right)\times ..........\times \left( n-r+1 \right)}{r\times \left( r-1 \right)\times \left( r-2 \right)\times ..........\times 1}$.
So, we have got $\dfrac{n}{1}.a=8$.
We have got $n.a=8$ ---(5).
Equating coefficients of ${{x}^{2}}$ on both sides from equation (4), we get ${}^{n}{{C}_{2}}.{{a}^{2}}=24$.
We have got $\dfrac{n.\left( n-1 \right)}{1\times 2}.{{a}^{2}}=24$.
We have got $\dfrac{\left( {{n}^{2}}-n \right).{{a}^{2}}}{2}=24$.
We have got ${{n}^{2}}.{{a}^{2}}-n{{a}^{2}}=24\times 2$.
We have got ${{\left( n.a \right)}^{2}}-\left( n.a \right).a=48$ ---(6).
We substitute the value $n.a=8$ obtained from equation (5) in equation (6).
We have got ${{8}^{2}}-8a=48$.
We have got $64-48=8a$.
We have got $16=8a$.
We have got $a=\dfrac{16}{8}$.
We have got a = 2.
Now we substitute the obtained value of ‘a’ in the equation (5) to find the value of ‘n’.
We have got $n.2=8$.
We have got $n=\dfrac{8}{2}$.
We have got n = 4.
∴ The values of ‘a’ and ‘n’ is ‘2’ and ‘4’.
So, the correct answer is “Option A”.
Note: We need to make sure that the order of the answers given in options are for ‘a’ and ‘n’. Whenever we get the problems involving binomial expansion, we expand it first to solve. Similarly, we can expect to solve the problems that contain more than two variables and fractional powers.
Complete step by step answer:
Given that we have a binomial expansion ${{\left( 1+ax \right)}^{n}}$, given as $1+8x+24{{x}^{2}}+......$. We need to find the values of ‘a’ and ‘n’.
The binomial expansion ${{\left( 1+ax \right)}^{n}}$ is similar to the expansion ${{\left( 1+x \right)}^{n}}$.
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is given as:
${{\left( 1+x \right)}^{n}}=1+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{3}}{{x}^{3}}+........$ ---(1).
We use equation (1), to expand the binomial expansion ${{\left( 1+ax \right)}^{n}}$.
So, the binomial expansion of ${{\left( 1+ax \right)}^{n}}$ is:
${{\left( 1+ax \right)}^{n}}=1+{}^{n}{{C}_{1}}\left( ax \right)+{}^{n}{{C}_{2}}{{\left( ax \right)}^{2}}+{}^{n}{{C}_{3}}{{\left( ax \right)}^{3}}+......$ ---(2).
According to the problem, the binomial expansion of ${{\left( 1+ax \right)}^{n}}$ is given as $1+8x+24{{x}^{2}}+......$ ---(3).
Using equations (2) and (3), we get
$1+8x+24{{x}^{2}}+......$ = $1+{}^{n}{{C}_{1}}\left( ax \right)+{}^{n}{{C}_{2}}{{\left( ax \right)}^{2}}+{}^{n}{{C}_{3}}{{\left( ax \right)}^{3}}+......$ .
$1+8x+24{{x}^{2}}+......$ = $1+{}^{n}{{C}_{1}}.a.x+{}^{n}{{C}_{2}}.{{a}^{2}}.{{x}^{2}}+{}^{n}{{C}_{3}}.{{a}^{3}}.{{x}^{3}}+......$ ---(4).
Comparing coefficients of ‘x’ terms on both sides, we get ${}^{n}{{C}_{1}}.a=8$.
We know that the value of ${}^{n}{{C}_{r}}$ is given as ${}^{n}{{C}_{r}}=\dfrac{n\times \left( n-1 \right)\times \left( n-2 \right)\times ..........\times \left( n-r+1 \right)}{r\times \left( r-1 \right)\times \left( r-2 \right)\times ..........\times 1}$.
So, we have got $\dfrac{n}{1}.a=8$.
We have got $n.a=8$ ---(5).
Equating coefficients of ${{x}^{2}}$ on both sides from equation (4), we get ${}^{n}{{C}_{2}}.{{a}^{2}}=24$.
We have got $\dfrac{n.\left( n-1 \right)}{1\times 2}.{{a}^{2}}=24$.
We have got $\dfrac{\left( {{n}^{2}}-n \right).{{a}^{2}}}{2}=24$.
We have got ${{n}^{2}}.{{a}^{2}}-n{{a}^{2}}=24\times 2$.
We have got ${{\left( n.a \right)}^{2}}-\left( n.a \right).a=48$ ---(6).
We substitute the value $n.a=8$ obtained from equation (5) in equation (6).
We have got ${{8}^{2}}-8a=48$.
We have got $64-48=8a$.
We have got $16=8a$.
We have got $a=\dfrac{16}{8}$.
We have got a = 2.
Now we substitute the obtained value of ‘a’ in the equation (5) to find the value of ‘n’.
We have got $n.2=8$.
We have got $n=\dfrac{8}{2}$.
We have got n = 4.
∴ The values of ‘a’ and ‘n’ is ‘2’ and ‘4’.
So, the correct answer is “Option A”.
Note: We need to make sure that the order of the answers given in options are for ‘a’ and ‘n’. Whenever we get the problems involving binomial expansion, we expand it first to solve. Similarly, we can expect to solve the problems that contain more than two variables and fractional powers.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE