
If the atmospheric pressure is 76 cm of mercury, at what depth of water will the pressure come to 4 atmospheres?
A. \[31\,{\text{m}}\]
B. \[21\,{\text{m}}\]
C. \[11\,{\text{m}}\]
D. \[9\,{\text{m}}\]
Answer
471.3k+ views
Hint: Use the formula for pressure depth relation. This formula gives the relation between the atmospheric pressure, pressure at a depth h, density of liquid and acceleration due to gravity. Convert the given atmospheric pressure in the SI system of units and determine the required depth of the water.
Formula used:
The pressure-depth formula is given by
\[P = {P_0} + \rho gh\] …… (1)
Here, \[{P_0}\] is the atmospheric pressure, \[P\] is the pressure at depth \[h\], \[\rho \] is density of the liquid and \[g\] is acceleration due to gravity.
Complete step by step answer:
We have given that the atmospheric pressure is 76 cm of mercury.
We know that the pressure 76 cm of mercury is equal to one atmospheric pressure.
\[1\,{\text{atm}} = {\text{76 cm of mercury}}\]
The pressure in one atmosphere is equal to \[1.013 \times {10^5}\,{\text{Pa}}\].
\[1\,{\text{atm}} = 1.013 \times {10^5}\,{\text{Pa}}\]
Hence, the atmospheric pressure \[1.013 \times {10^5}\,{\text{Pa}}\].
\[{P_0} = 1.013 \times {10^5}\,{\text{Pa}}\]
Here, we have asked to determine the depth of water at which the pressure of the water becomes 4 atm.
$P= 4atm$
Convert the unit of pressure at depth h in Pascal.
\[P = \left( {4\,{\text{atm}}} \right)\left( {\dfrac{{1.013 \times {{10}^5}\,{\text{Pa}}}}{{1\,{\text{atm}}}}} \right)\]
\[ \Rightarrow P = 4 \times 1.013 \times {10^5}\,{\text{Pa}}\]
We know that the density of water is \[1000\,{\text{kg/}}{{\text{m}}^3}\] and the value of acceleration due to gravity is \[9.8\,{\text{m/}}{{\text{s}}^2}\].
\[\rho = 1000\,{\text{kg/}}{{\text{m}}^3}\]
\[g = 9.8\,{\text{m/}}{{\text{s}}^2}\]
Let us now determine the depth at which pressure of the water is 4 atm using equation (1).
Substitute \[4 \times 1.013 \times {10^5}\,{\text{Pa}}\] for \[P\], \[1.013 \times {10^5}\,{\text{Pa}}\] for \[{P_0}\], \[1000\,{\text{kg/}}{{\text{m}}^3}\] for \[\rho \] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in equation (1).
\[\left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) = \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right) + \left( {1000\,{\text{kg/}}{{\text{m}}^3}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)h\]
\[ \Rightarrow 980h = \left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) - \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right)\]
\[ \Rightarrow h = \dfrac{{\left( {4 - 1} \right) \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = \dfrac{{3 \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = 31\,{\text{m}}\]
Therefore, the depth at which the pressure of water is 4 atm is \[31\,{\text{m}}\].
So, the correct answer is “Option A”.
Note:
The students should not forget to convert the unit of the pressure from atmospheric pressure to Pascal.
This is because all the physical quantities used in the formula pressure depth relation are in the SI system of units.
Hence, one should convert the units of both the pressure values 1 atm and 4 atm.
Formula used:
The pressure-depth formula is given by
\[P = {P_0} + \rho gh\] …… (1)
Here, \[{P_0}\] is the atmospheric pressure, \[P\] is the pressure at depth \[h\], \[\rho \] is density of the liquid and \[g\] is acceleration due to gravity.
Complete step by step answer:
We have given that the atmospheric pressure is 76 cm of mercury.
We know that the pressure 76 cm of mercury is equal to one atmospheric pressure.
\[1\,{\text{atm}} = {\text{76 cm of mercury}}\]
The pressure in one atmosphere is equal to \[1.013 \times {10^5}\,{\text{Pa}}\].
\[1\,{\text{atm}} = 1.013 \times {10^5}\,{\text{Pa}}\]
Hence, the atmospheric pressure \[1.013 \times {10^5}\,{\text{Pa}}\].
\[{P_0} = 1.013 \times {10^5}\,{\text{Pa}}\]
Here, we have asked to determine the depth of water at which the pressure of the water becomes 4 atm.
$P= 4atm$
Convert the unit of pressure at depth h in Pascal.
\[P = \left( {4\,{\text{atm}}} \right)\left( {\dfrac{{1.013 \times {{10}^5}\,{\text{Pa}}}}{{1\,{\text{atm}}}}} \right)\]
\[ \Rightarrow P = 4 \times 1.013 \times {10^5}\,{\text{Pa}}\]
We know that the density of water is \[1000\,{\text{kg/}}{{\text{m}}^3}\] and the value of acceleration due to gravity is \[9.8\,{\text{m/}}{{\text{s}}^2}\].
\[\rho = 1000\,{\text{kg/}}{{\text{m}}^3}\]
\[g = 9.8\,{\text{m/}}{{\text{s}}^2}\]
Let us now determine the depth at which pressure of the water is 4 atm using equation (1).
Substitute \[4 \times 1.013 \times {10^5}\,{\text{Pa}}\] for \[P\], \[1.013 \times {10^5}\,{\text{Pa}}\] for \[{P_0}\], \[1000\,{\text{kg/}}{{\text{m}}^3}\] for \[\rho \] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in equation (1).
\[\left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) = \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right) + \left( {1000\,{\text{kg/}}{{\text{m}}^3}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)h\]
\[ \Rightarrow 980h = \left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) - \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right)\]
\[ \Rightarrow h = \dfrac{{\left( {4 - 1} \right) \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = \dfrac{{3 \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = 31\,{\text{m}}\]
Therefore, the depth at which the pressure of water is 4 atm is \[31\,{\text{m}}\].
So, the correct answer is “Option A”.
Note:
The students should not forget to convert the unit of the pressure from atmospheric pressure to Pascal.
This is because all the physical quantities used in the formula pressure depth relation are in the SI system of units.
Hence, one should convert the units of both the pressure values 1 atm and 4 atm.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
