
If the area of the triangle inscribed in the parabola ${{y}^{2}}=8x$, then the ordinate of whose vertices are 1, 3 and 4 is
A. $\dfrac{3}{4}$
B. $\dfrac{3}{8}$
C. $\dfrac{4}{3}$
D. $\dfrac{5}{4}$
Answer
594k+ views
Hint: We will be using the concepts of parabola and coordinate geometry to solve the problem. We will be using the equation of the parabola and the y-coordinates given in the question to find the vertices of the triangle then we will use the formulae for finding the area of the triangle in coordinate geometry.
Complete step by step answer:
Now, we have been given a parabola ${{y}^{2}}=8x$. Also, we have been given ordinates of the vertices of triangles inscribed by the parabola. So, we have,
${{y}_{1}}=1,{{y}_{2}}=3,{{y}_{3}}=4$
Now, since the points lie of ${{y}^{2}}=8x$ Therefore, we will use the equation of parabola to find the subsequent x-coordinates. So,
$\begin{align}
& \Rightarrow {{y}_{1}}^{2}=8{{x}_{1}} \\
& \Rightarrow {{1}^{2}}=8{{x}_{1}} \\
& \Rightarrow \dfrac{1}{8}={{x}_{1}} \\
& \Rightarrow {{y}_{2}}^{2}=8{{x}_{2}} \\
& \Rightarrow \dfrac{9}{8}={{x}_{2}} \\
& \Rightarrow {{y}_{3}}^{2}=8{{x}_{3}} \\
& \Rightarrow \dfrac{16}{8}={{x}_{3}} \\
& \Rightarrow 2={{x}_{3}} \\
\end{align}$
So, the vertices of triangle are;
$\left( \dfrac{1}{8},1 \right)\left( \dfrac{9}{8},3 \right)\left( 2,4 \right)$
Now, we know that area of triangles with $\left( {{x}_{1}},{{y}_{1}} \right)\left( {{x}_{2}},{{y}_{2}} \right)\left( {{x}_{3}},{{y}_{3}} \right)$ as vertices is;
$\begin{align}
& \Rightarrow \dfrac{1}{2}\left( {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right) \\
& Area=\dfrac{1}{2}\left( \dfrac{1}{8}\left( 3-4 \right)+\dfrac{9}{8}\left( 4-1 \right)+2\left( 1-3 \right) \right) \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{1}{8}\left( -1 \right)+\dfrac{9}{8}\left( 3 \right)+2\left( -2 \right) \right) \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{-1}{8}+\dfrac{27}{8}-4 \right) \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{-1+27-32}{8} \right) \\
& \Rightarrow \dfrac{-33+27}{16} \\
& \Rightarrow \dfrac{-6}{16} \\
& \Rightarrow \dfrac{-3}{8} \\
\end{align}$
Since, the area can’t be negative therefore the area is $\dfrac{3}{8}$ .
So, the correct answer is “Option B”.
Note: To solve these type of question it is important to remember the concepts of parabola and coordinate geometry also the question can be solved alternatively as;
\[\begin{align}
& Area=\dfrac{\left( {{y}_{1}}-{{y}_{2}} \right)\left( {{y}_{2}}-{{y}_{3}} \right)\left( {{y}_{3}}-{{y}_{1}} \right)}{8a} \\
& \Rightarrow \dfrac{\left( 1-3 \right)\left( 3-4 \right)\left( 4-1 \right)}{8\times 2} \\
& \Rightarrow \dfrac{3}{8} \\
\end{align}\]
Complete step by step answer:
Now, we have been given a parabola ${{y}^{2}}=8x$. Also, we have been given ordinates of the vertices of triangles inscribed by the parabola. So, we have,
${{y}_{1}}=1,{{y}_{2}}=3,{{y}_{3}}=4$
Now, since the points lie of ${{y}^{2}}=8x$ Therefore, we will use the equation of parabola to find the subsequent x-coordinates. So,
$\begin{align}
& \Rightarrow {{y}_{1}}^{2}=8{{x}_{1}} \\
& \Rightarrow {{1}^{2}}=8{{x}_{1}} \\
& \Rightarrow \dfrac{1}{8}={{x}_{1}} \\
& \Rightarrow {{y}_{2}}^{2}=8{{x}_{2}} \\
& \Rightarrow \dfrac{9}{8}={{x}_{2}} \\
& \Rightarrow {{y}_{3}}^{2}=8{{x}_{3}} \\
& \Rightarrow \dfrac{16}{8}={{x}_{3}} \\
& \Rightarrow 2={{x}_{3}} \\
\end{align}$
So, the vertices of triangle are;
$\left( \dfrac{1}{8},1 \right)\left( \dfrac{9}{8},3 \right)\left( 2,4 \right)$
Now, we know that area of triangles with $\left( {{x}_{1}},{{y}_{1}} \right)\left( {{x}_{2}},{{y}_{2}} \right)\left( {{x}_{3}},{{y}_{3}} \right)$ as vertices is;
$\begin{align}
& \Rightarrow \dfrac{1}{2}\left( {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right) \\
& Area=\dfrac{1}{2}\left( \dfrac{1}{8}\left( 3-4 \right)+\dfrac{9}{8}\left( 4-1 \right)+2\left( 1-3 \right) \right) \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{1}{8}\left( -1 \right)+\dfrac{9}{8}\left( 3 \right)+2\left( -2 \right) \right) \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{-1}{8}+\dfrac{27}{8}-4 \right) \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{-1+27-32}{8} \right) \\
& \Rightarrow \dfrac{-33+27}{16} \\
& \Rightarrow \dfrac{-6}{16} \\
& \Rightarrow \dfrac{-3}{8} \\
\end{align}$
Since, the area can’t be negative therefore the area is $\dfrac{3}{8}$ .
So, the correct answer is “Option B”.
Note: To solve these type of question it is important to remember the concepts of parabola and coordinate geometry also the question can be solved alternatively as;
\[\begin{align}
& Area=\dfrac{\left( {{y}_{1}}-{{y}_{2}} \right)\left( {{y}_{2}}-{{y}_{3}} \right)\left( {{y}_{3}}-{{y}_{1}} \right)}{8a} \\
& \Rightarrow \dfrac{\left( 1-3 \right)\left( 3-4 \right)\left( 4-1 \right)}{8\times 2} \\
& \Rightarrow \dfrac{3}{8} \\
\end{align}\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

