
If the arcs of same length in two circles subtends angles \[{{65}^{\circ }}\]and \[{{110}^{\circ }}\]at the centre, find the ratio of their radii.
Answer
590.7k+ views
Hint: When a certain external force is applied on a pendulum, it moves back and forth with periodic motion. So it is displaced by a certain angle and it is found using the formula \[l=r\theta \]here l is arc length and “r” is radius or length of pendulum. We use the formula \[l=r\theta \].
Complete step-by-step answer:
Given, the arcs of same length in two circles subtend \[{{65}^{\circ }}\]and \[{{110}^{\circ }}\]at the centre
Let the radii of two circles be \[{{r}_{1}}\]and \[{{r}_{2}}\]. Let an arc of length l subtends an angle \[{{65}^{\circ }}\]at the centre of circle of radius \[{{r}_{1}}\]
Now an arc of length l subtends an angle \[{{110}^{\circ }}\]at the centre of the circle of radius \[{{r}_{2}}\].
We know that the length of the arc is given by the formula \[l=r\theta \]
\[l=\dfrac{{{r}_{1}}13\pi }{36}\]for circle with radius \[{{r}_{1}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[l=\dfrac{{{r}_{2}}11\pi }{18}\]for circle with radius \[{{r}_{2}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Equation (1)=equation(2)
\[\dfrac{{{r}_{1}}13\pi }{36}=\dfrac{{{r}_{2}}11\pi }{18}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{{{r}_{1}}13}{2}=\dfrac{{{r}_{2}}11}{1}\]
\[\Rightarrow \dfrac{{{r}_{1}}}{{{r}_{2}}}=\dfrac{22}{13}\]
Note: The length of the arc is given by formula \[l=r\theta \] in this \[\theta \] is the angle subtended and it is in radians but in the problem \[\theta \] is given in degrees so we have to convert to radians. To convert degrees to radians we have to multiply the given degrees with \[\dfrac{\pi }{180}\] then we will get angle subtended in radians.
Complete step-by-step answer:
Given, the arcs of same length in two circles subtend \[{{65}^{\circ }}\]and \[{{110}^{\circ }}\]at the centre
Let the radii of two circles be \[{{r}_{1}}\]and \[{{r}_{2}}\]. Let an arc of length l subtends an angle \[{{65}^{\circ }}\]at the centre of circle of radius \[{{r}_{1}}\]
Now an arc of length l subtends an angle \[{{110}^{\circ }}\]at the centre of the circle of radius \[{{r}_{2}}\].
We know that the length of the arc is given by the formula \[l=r\theta \]
\[l=\dfrac{{{r}_{1}}13\pi }{36}\]for circle with radius \[{{r}_{1}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[l=\dfrac{{{r}_{2}}11\pi }{18}\]for circle with radius \[{{r}_{2}}\]and arc length l . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Equation (1)=equation(2)
\[\dfrac{{{r}_{1}}13\pi }{36}=\dfrac{{{r}_{2}}11\pi }{18}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{{{r}_{1}}13}{2}=\dfrac{{{r}_{2}}11}{1}\]
\[\Rightarrow \dfrac{{{r}_{1}}}{{{r}_{2}}}=\dfrac{22}{13}\]
Note: The length of the arc is given by formula \[l=r\theta \] in this \[\theta \] is the angle subtended and it is in radians but in the problem \[\theta \] is given in degrees so we have to convert to radians. To convert degrees to radians we have to multiply the given degrees with \[\dfrac{\pi }{180}\] then we will get angle subtended in radians.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

