
If the angle $\angle A={{90}^{\circ }}$ in the $\Delta ABC$, then \[{{\tan }^{-1}}\left( \dfrac{c}{a+b} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a+c} \right)\] is
A. 0
B. 1
C. $\dfrac{\pi }{4}$
D. $\dfrac{\pi }{6}$
E. $\dfrac{\pi }{8}$
Answer
408.9k+ views
Hint: We first use the triangle formula of the angles and then the trigonometric additional form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy}\]. We also use Pythagoras’ theorem ${{b}^{2}}+{{c}^{2}}={{a}^{2}}$. We put the values of \[x=\left( \dfrac{c}{a+b} \right),y=\left( \dfrac{b}{a+c} \right)\] and find the particular solution for the inverse.
Complete step-by-step solution:
In $\Delta ABC$, we get $\angle A={{90}^{\circ }}$. Therefore, $\Delta ABC$ is a right-angle triangle whose hypotenuse is the opposite side of the angle $\angle A={{90}^{\circ }}$.
From Pythagoras’ theorem we know that ${{b}^{2}}+{{c}^{2}}={{a}^{2}}$.
We now use the trigonometric additional form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy}\].
Now we place \[x=\left( \dfrac{c}{a+b} \right),y=\left( \dfrac{b}{a+c} \right)\].
We get \[{{\tan }^{-1}}\left( \dfrac{c}{a+b} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a+c} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{c}{a+b}+\dfrac{b}{a+c}}{1-\dfrac{c}{a+b}\times \dfrac{b}{a+c}} \right)\].
We multiply with \[\left( a+c \right)\left( a+b \right)\] and get
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\dfrac{c}{a+b}+\dfrac{b}{a+c}}{1-\dfrac{c}{a+b}\times \dfrac{b}{a+c}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{c\left( a+c \right)+b\left( a+b \right)}{\left( a+c \right)\left( a+b \right)-bc} \right) \\
\end{align}\]
We simplify the equation and get
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{c\left( a+c \right)+b\left( a+b \right)}{\left( a+c \right)\left( a+b \right)-bc} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{ac+{{c}^{2}}+{{b}^{2}}+ab}{{{a}^{2}}+ab+ac+bc-bc} \right) \\
\end{align}\]
We replace the values ${{b}^{2}}+{{c}^{2}}={{a}^{2}}$ in the equation.
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{ac+{{c}^{2}}+{{b}^{2}}+ab}{{{a}^{2}}+ab+ac+bc-bc} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{ac+{{a}^{2}}+ab}{ac+{{a}^{2}}+ab} \right) \\
& ={{\tan }^{-1}}1 \\
\end{align}\]
Now as the angle is an angle of a triangle, we can find the particular solution of the inverse.
So, \[{{\tan }^{-1}}\left( \dfrac{c}{a+b} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a+c} \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}\].
Therefore, the correct option is C.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\dfrac{\pi }{2}+a$ for $\tan \left( x \right)=\tan a$ where $-\dfrac{\pi }{2}\le a\le \dfrac{\pi }{2}$. For our given problem \[{{\tan }^{-1}}1=\dfrac{\pi }{4}\], the general solution will be $x=n\dfrac{\pi }{2}+\dfrac{\pi }{4}$. Here $n\in \mathbb{Z}$. But for $\Delta ABC$, we get $\angle A={{90}^{\circ }}$. So, other angles are acute.
Complete step-by-step solution:
In $\Delta ABC$, we get $\angle A={{90}^{\circ }}$. Therefore, $\Delta ABC$ is a right-angle triangle whose hypotenuse is the opposite side of the angle $\angle A={{90}^{\circ }}$.

From Pythagoras’ theorem we know that ${{b}^{2}}+{{c}^{2}}={{a}^{2}}$.
We now use the trigonometric additional form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy}\].
Now we place \[x=\left( \dfrac{c}{a+b} \right),y=\left( \dfrac{b}{a+c} \right)\].
We get \[{{\tan }^{-1}}\left( \dfrac{c}{a+b} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a+c} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{c}{a+b}+\dfrac{b}{a+c}}{1-\dfrac{c}{a+b}\times \dfrac{b}{a+c}} \right)\].
We multiply with \[\left( a+c \right)\left( a+b \right)\] and get
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\dfrac{c}{a+b}+\dfrac{b}{a+c}}{1-\dfrac{c}{a+b}\times \dfrac{b}{a+c}} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{c\left( a+c \right)+b\left( a+b \right)}{\left( a+c \right)\left( a+b \right)-bc} \right) \\
\end{align}\]
We simplify the equation and get
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{c\left( a+c \right)+b\left( a+b \right)}{\left( a+c \right)\left( a+b \right)-bc} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{ac+{{c}^{2}}+{{b}^{2}}+ab}{{{a}^{2}}+ab+ac+bc-bc} \right) \\
\end{align}\]
We replace the values ${{b}^{2}}+{{c}^{2}}={{a}^{2}}$ in the equation.
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{ac+{{c}^{2}}+{{b}^{2}}+ab}{{{a}^{2}}+ab+ac+bc-bc} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{ac+{{a}^{2}}+ab}{ac+{{a}^{2}}+ab} \right) \\
& ={{\tan }^{-1}}1 \\
\end{align}\]
Now as the angle is an angle of a triangle, we can find the particular solution of the inverse.
So, \[{{\tan }^{-1}}\left( \dfrac{c}{a+b} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a+c} \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}\].
Therefore, the correct option is C.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\dfrac{\pi }{2}+a$ for $\tan \left( x \right)=\tan a$ where $-\dfrac{\pi }{2}\le a\le \dfrac{\pi }{2}$. For our given problem \[{{\tan }^{-1}}1=\dfrac{\pi }{4}\], the general solution will be $x=n\dfrac{\pi }{2}+\dfrac{\pi }{4}$. Here $n\in \mathbb{Z}$. But for $\Delta ABC$, we get $\angle A={{90}^{\circ }}$. So, other angles are acute.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
