
If $\tanh x=\dfrac{12}{13}$, how do you find the values of the other hyperbolic functions at $x$ ?
Answer
546.6k+ views
Hint:We explain the function $\arctan \left( x \right)$. We express the inverse function of tan in the form of $\arctan \left( x \right)={{\tan }^{-1}}x$. It’s given that $\tan x=\dfrac{12}{13}$. Thereafter we take all the other hyperbolic functions at $x$ of that angle to find the solution. We also use the representation of a right-angle triangle with height and base ratio being $\dfrac{12}{13}$ and the angle being $\theta $.
Complete step by step answer:
The hyperbolic functions are analogues of the ordinary trigonometric functions. All the usual relations are also used for the hyperbolic functions. It’s given that $\tanh x=\dfrac{12}{13}$. We can find the value of $\operatorname{sech}x$ from the relation of ${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \tanh x \right)}^{2}}$.
Putting the value, we get
${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \dfrac{12}{13} \right)}^{2}}\\
\Rightarrow{{\left( \operatorname{sech}x \right)}^{2}}=\dfrac{313}{169}$
Now taking square root we get
\[\left( \operatorname{sech}x \right)=\sqrt{\dfrac{313}{169}}\\
\Rightarrow \left( \operatorname{sech}x \right)=\dfrac{\sqrt{313}}{13}\]
Now we know the relation \[\cosh x=\dfrac{1}{\operatorname{sech}x}\]. Putting the value, we get,
\[\cosh x=\dfrac{1}{\operatorname{sech}x}\\
\Rightarrow\cosh x=\dfrac{1}{\dfrac{\sqrt{313}}{13}}\\
\Rightarrow\cosh x=\dfrac{13}{\sqrt{313}}\]
We know the sum of square law of,
${{\left( \sinh x \right)}^{2}}+{{\left( \cosh x \right)}^{2}}=1$
Putting the value of \[\cosh x\], we get
${{\left( \sinh x \right)}^{2}}=1-{{\left( \cosh x \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=1-{{\left( \dfrac{13}{\sqrt{313}} \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=\dfrac{144}{313}$
Taking square root, we get $\sinh x=\dfrac{12}{\sqrt{313}}$
We also have the relations \[\coth x=\dfrac{1}{\tanh x}\] and \[\operatorname{csch}x=\dfrac{1}{\sinh x}\].
Putting the values, we get
\[\coth x=\dfrac{1}{\tanh x}\\
\Rightarrow\coth x=\dfrac{1}{\dfrac{12}{13}}\\
\Rightarrow\coth x=\dfrac{13}{12}\]
And similarly,
\[\operatorname{csch}x=\dfrac{1}{\sinh x}\\
\Rightarrow\operatorname{csch}x =\dfrac{1}{\dfrac{12}{\sqrt{313}}}\\
\therefore\operatorname{csch}x =\dfrac{\sqrt{313}}{12}\]
Hence, in this way we have found all other hyperbolic functions.
Note:We can also apply the trigonometric triangle image form to get the value of other hyperbolic functions. In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola.
Complete step by step answer:
The hyperbolic functions are analogues of the ordinary trigonometric functions. All the usual relations are also used for the hyperbolic functions. It’s given that $\tanh x=\dfrac{12}{13}$. We can find the value of $\operatorname{sech}x$ from the relation of ${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \tanh x \right)}^{2}}$.
Putting the value, we get
${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \dfrac{12}{13} \right)}^{2}}\\
\Rightarrow{{\left( \operatorname{sech}x \right)}^{2}}=\dfrac{313}{169}$
Now taking square root we get
\[\left( \operatorname{sech}x \right)=\sqrt{\dfrac{313}{169}}\\
\Rightarrow \left( \operatorname{sech}x \right)=\dfrac{\sqrt{313}}{13}\]
Now we know the relation \[\cosh x=\dfrac{1}{\operatorname{sech}x}\]. Putting the value, we get,
\[\cosh x=\dfrac{1}{\operatorname{sech}x}\\
\Rightarrow\cosh x=\dfrac{1}{\dfrac{\sqrt{313}}{13}}\\
\Rightarrow\cosh x=\dfrac{13}{\sqrt{313}}\]
We know the sum of square law of,
${{\left( \sinh x \right)}^{2}}+{{\left( \cosh x \right)}^{2}}=1$
Putting the value of \[\cosh x\], we get
${{\left( \sinh x \right)}^{2}}=1-{{\left( \cosh x \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=1-{{\left( \dfrac{13}{\sqrt{313}} \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=\dfrac{144}{313}$
Taking square root, we get $\sinh x=\dfrac{12}{\sqrt{313}}$
We also have the relations \[\coth x=\dfrac{1}{\tanh x}\] and \[\operatorname{csch}x=\dfrac{1}{\sinh x}\].
Putting the values, we get
\[\coth x=\dfrac{1}{\tanh x}\\
\Rightarrow\coth x=\dfrac{1}{\dfrac{12}{13}}\\
\Rightarrow\coth x=\dfrac{13}{12}\]
And similarly,
\[\operatorname{csch}x=\dfrac{1}{\sinh x}\\
\Rightarrow\operatorname{csch}x =\dfrac{1}{\dfrac{12}{\sqrt{313}}}\\
\therefore\operatorname{csch}x =\dfrac{\sqrt{313}}{12}\]
Hence, in this way we have found all other hyperbolic functions.
Note:We can also apply the trigonometric triangle image form to get the value of other hyperbolic functions. In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

