
If $\tanh x=\dfrac{12}{13}$, how do you find the values of the other hyperbolic functions at $x$ ?
Answer
532.2k+ views
Hint:We explain the function $\arctan \left( x \right)$. We express the inverse function of tan in the form of $\arctan \left( x \right)={{\tan }^{-1}}x$. It’s given that $\tan x=\dfrac{12}{13}$. Thereafter we take all the other hyperbolic functions at $x$ of that angle to find the solution. We also use the representation of a right-angle triangle with height and base ratio being $\dfrac{12}{13}$ and the angle being $\theta $.
Complete step by step answer:
The hyperbolic functions are analogues of the ordinary trigonometric functions. All the usual relations are also used for the hyperbolic functions. It’s given that $\tanh x=\dfrac{12}{13}$. We can find the value of $\operatorname{sech}x$ from the relation of ${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \tanh x \right)}^{2}}$.
Putting the value, we get
${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \dfrac{12}{13} \right)}^{2}}\\
\Rightarrow{{\left( \operatorname{sech}x \right)}^{2}}=\dfrac{313}{169}$
Now taking square root we get
\[\left( \operatorname{sech}x \right)=\sqrt{\dfrac{313}{169}}\\
\Rightarrow \left( \operatorname{sech}x \right)=\dfrac{\sqrt{313}}{13}\]
Now we know the relation \[\cosh x=\dfrac{1}{\operatorname{sech}x}\]. Putting the value, we get,
\[\cosh x=\dfrac{1}{\operatorname{sech}x}\\
\Rightarrow\cosh x=\dfrac{1}{\dfrac{\sqrt{313}}{13}}\\
\Rightarrow\cosh x=\dfrac{13}{\sqrt{313}}\]
We know the sum of square law of,
${{\left( \sinh x \right)}^{2}}+{{\left( \cosh x \right)}^{2}}=1$
Putting the value of \[\cosh x\], we get
${{\left( \sinh x \right)}^{2}}=1-{{\left( \cosh x \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=1-{{\left( \dfrac{13}{\sqrt{313}} \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=\dfrac{144}{313}$
Taking square root, we get $\sinh x=\dfrac{12}{\sqrt{313}}$
We also have the relations \[\coth x=\dfrac{1}{\tanh x}\] and \[\operatorname{csch}x=\dfrac{1}{\sinh x}\].
Putting the values, we get
\[\coth x=\dfrac{1}{\tanh x}\\
\Rightarrow\coth x=\dfrac{1}{\dfrac{12}{13}}\\
\Rightarrow\coth x=\dfrac{13}{12}\]
And similarly,
\[\operatorname{csch}x=\dfrac{1}{\sinh x}\\
\Rightarrow\operatorname{csch}x =\dfrac{1}{\dfrac{12}{\sqrt{313}}}\\
\therefore\operatorname{csch}x =\dfrac{\sqrt{313}}{12}\]
Hence, in this way we have found all other hyperbolic functions.
Note:We can also apply the trigonometric triangle image form to get the value of other hyperbolic functions. In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola.
Complete step by step answer:
The hyperbolic functions are analogues of the ordinary trigonometric functions. All the usual relations are also used for the hyperbolic functions. It’s given that $\tanh x=\dfrac{12}{13}$. We can find the value of $\operatorname{sech}x$ from the relation of ${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \tanh x \right)}^{2}}$.
Putting the value, we get
${{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \dfrac{12}{13} \right)}^{2}}\\
\Rightarrow{{\left( \operatorname{sech}x \right)}^{2}}=\dfrac{313}{169}$
Now taking square root we get
\[\left( \operatorname{sech}x \right)=\sqrt{\dfrac{313}{169}}\\
\Rightarrow \left( \operatorname{sech}x \right)=\dfrac{\sqrt{313}}{13}\]
Now we know the relation \[\cosh x=\dfrac{1}{\operatorname{sech}x}\]. Putting the value, we get,
\[\cosh x=\dfrac{1}{\operatorname{sech}x}\\
\Rightarrow\cosh x=\dfrac{1}{\dfrac{\sqrt{313}}{13}}\\
\Rightarrow\cosh x=\dfrac{13}{\sqrt{313}}\]
We know the sum of square law of,
${{\left( \sinh x \right)}^{2}}+{{\left( \cosh x \right)}^{2}}=1$
Putting the value of \[\cosh x\], we get
${{\left( \sinh x \right)}^{2}}=1-{{\left( \cosh x \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=1-{{\left( \dfrac{13}{\sqrt{313}} \right)}^{2}}\\
\Rightarrow{{\left( \sinh x \right)}^{2}}=\dfrac{144}{313}$
Taking square root, we get $\sinh x=\dfrac{12}{\sqrt{313}}$
We also have the relations \[\coth x=\dfrac{1}{\tanh x}\] and \[\operatorname{csch}x=\dfrac{1}{\sinh x}\].
Putting the values, we get
\[\coth x=\dfrac{1}{\tanh x}\\
\Rightarrow\coth x=\dfrac{1}{\dfrac{12}{13}}\\
\Rightarrow\coth x=\dfrac{13}{12}\]
And similarly,
\[\operatorname{csch}x=\dfrac{1}{\sinh x}\\
\Rightarrow\operatorname{csch}x =\dfrac{1}{\dfrac{12}{\sqrt{313}}}\\
\therefore\operatorname{csch}x =\dfrac{\sqrt{313}}{12}\]
Hence, in this way we have found all other hyperbolic functions.
Note:We can also apply the trigonometric triangle image form to get the value of other hyperbolic functions. In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

