
If $\tan y = \dfrac{{2t}}{{1 - {t^2}}}$ and \[\sin x = \dfrac{{2t}}{{1 + {t^2}}}\], then $\dfrac{{dy}}{{dx}}$ equals:
(A) $\dfrac{2}{{1 - {t^2}}}$
(B) $\dfrac{1}{{1 + {t^2}}}$
(C) $1$
(D) $2$
Answer
497.7k+ views
Hint: In the given problem, we are required to differentiate a parametric function in parameter t.
For differentiating parametric functions, we first find derivatives of x and y with respect to t separately and then divide both of them to find differential $\dfrac{{dy}}{{dx}}$. Also, we will use the chain rule of differentiation in order to solve the problem. We must remember the derivatives of trigonometric functions such as sine and cosine to get to the final answer.
Complete answer:
Now, we have, $\tan y = \dfrac{{2t}}{{1 - {t^2}}}$ and \[\sin x = \dfrac{{2t}}{{1 + {t^2}}}\]. So, to find the derivative of the parametric function, we first differentiate the functions in x and y separately with respect to the parameter, t.
Hence, differentiating the functions with respect to t, we get,
$\dfrac{d}{{dt}}\left( {\tan y} \right) = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 - {t^2}}}} \right)$
We know that the derivative of tangent function $\tan x$ with respect to x is ${\sec ^2}x$. So, we get,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 - {t^2}}}} \right)$
Now, we find derivative of right side of equation using quotient rule of differentiation $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$. So, we get,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{\left( {1 - {t^2}} \right)\dfrac{d}{{dt}}\left( {2t} \right) - \left( {2t} \right)\dfrac{d}{{dt}}\left( {1 - {t^2}} \right)}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Using power rule of differentiation $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{\left( {1 - {t^2}} \right)\left( 2 \right) - \left( {2t} \right)\left( { - 2t} \right)}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{2 - 2{t^2} + 4{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Opening the brackets,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
So, shifting secant term to right side of equation,
$ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{1}{{{{\sec }^2}y}} \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Using trigonometric identity ${\sec ^2}x = {\tan ^2}x + 1$, we get ,
$ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{1}{{{{\tan }^2}y + 1}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Substituting the value of tangent as $\tan y = \dfrac{{2t}}{{1 - {t^2}}}$
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{1}{{{{\left( {\dfrac{{2t}}{{1 - {t^2}}}} \right)}^2} + 1}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Computing the squares and taking LCM, we get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{1}{{\dfrac{{4{t^2} + {t^4} - 2{t^2} + 1}}{{{t^4} - 2{t^2} + 1}}}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Simplifying the expression,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{{{t^4} - 2{t^2} + 1}}{{{t^4} + 2{t^2} + 1}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Condensing the expressions as whole squares,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{{{\left( {1 - {t^2}} \right)}^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}} \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Cancelling the common terms in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{2}{{\left( {1 + {t^2}} \right)}} - - - - - \left( 1 \right)\]
Now, we differentiate \[\sin x = \dfrac{{2t}}{{1 + {t^2}}}\] with respect to t. So, we get,
\[\dfrac{d}{{dt}}\left( {\sin x} \right) = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\]
We know that derivative of sine is cosine. Using quotient rule on right side of equation, we get,
\[ \Rightarrow \cos x \times \dfrac{{dx}}{{dt}} = \dfrac{{\left( {1 + {t^2}} \right)\dfrac{d}{{dt}}\left( {2t} \right) - \left( {2t} \right)\dfrac{d}{{dt}}\left( {1 + {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using power rule of differentiation, we get,
\[ \Rightarrow \cos x \times \dfrac{{dx}}{{dt}} = \dfrac{{\left( {1 + {t^2}} \right)\left( 2 \right) - \left( {2t} \right)\left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Shifting cosine to right side of equation,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\cos x}} \times \dfrac{{2 + 2{t^2} - 4{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\cos x}} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}x} }} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Substituting value of sine,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)}^2}} }} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Computing whole squares and taking LCM,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\sqrt {\dfrac{{1 + {t^4} + 2{t^2} - 4{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}} }} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{{\left( {1 + {t^2}} \right)}}{{\left( {1 - {t^2}} \right)}} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{2}{{\left( {1 + {t^2}} \right)}} - - - - - \left( 2 \right)\]
Dividing equation $\left( 1 \right)$ by equation $\left( 2 \right)$, we get,
\[\dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}} = \dfrac{{\left[ {\dfrac{2}{{\left( {1 + {t^2}} \right)}}} \right]}}{{\left[ {\dfrac{2}{{\left( {1 + {t^2}} \right)}}} \right]}}\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 1\]
Hence, the correct answer is the option (C).
Note:
We must remember this method to find the derivatives of the parametric function. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
We can also solve the problem using trigonometric substitution as $t = \tan \theta $.
Then, we get, $\tan y = \dfrac{{2t}}{{1 - {t^2}}} = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
We know the double angle formula for tangent as $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$.
So, we get, $\tan y = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = \tan 2\theta $.
Taking tangent inverse function on both sides of equation,
$ \Rightarrow y = 2\theta $
Similarly, \[\sin x = \dfrac{{2t}}{{1 + {t^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\].
We know the double angle formula for sine in terms of tangent as \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]. Now, we get,
\[\sin x = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta \]
Taking sine inverse function on both sides,
\[ \Rightarrow x = 2\theta \]
Now, we can calculate the value of $\dfrac{{dy}}{{dx}}$ by chain rule $\dfrac{{\left( {\dfrac{{dy}}{{d\theta }}} \right)}}{{\left( {\dfrac{{dx}}{{d\theta }}} \right)}}$.
So, we get, \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{d\theta }}\left( {2\theta } \right)}}{{\dfrac{d}{{d\theta }}\left( {2\theta } \right)}}\]
Using the power rule of differentiation, we get,
\[\dfrac{{dy}}{{dx}} = \dfrac{2}{2} = 1\]
Hence, we get the same answer.
For differentiating parametric functions, we first find derivatives of x and y with respect to t separately and then divide both of them to find differential $\dfrac{{dy}}{{dx}}$. Also, we will use the chain rule of differentiation in order to solve the problem. We must remember the derivatives of trigonometric functions such as sine and cosine to get to the final answer.
Complete answer:
Now, we have, $\tan y = \dfrac{{2t}}{{1 - {t^2}}}$ and \[\sin x = \dfrac{{2t}}{{1 + {t^2}}}\]. So, to find the derivative of the parametric function, we first differentiate the functions in x and y separately with respect to the parameter, t.
Hence, differentiating the functions with respect to t, we get,
$\dfrac{d}{{dt}}\left( {\tan y} \right) = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 - {t^2}}}} \right)$
We know that the derivative of tangent function $\tan x$ with respect to x is ${\sec ^2}x$. So, we get,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 - {t^2}}}} \right)$
Now, we find derivative of right side of equation using quotient rule of differentiation $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$. So, we get,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{\left( {1 - {t^2}} \right)\dfrac{d}{{dt}}\left( {2t} \right) - \left( {2t} \right)\dfrac{d}{{dt}}\left( {1 - {t^2}} \right)}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Using power rule of differentiation $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{\left( {1 - {t^2}} \right)\left( 2 \right) - \left( {2t} \right)\left( { - 2t} \right)}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{2 - 2{t^2} + 4{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Opening the brackets,
$ \Rightarrow {\sec ^2}y \times \dfrac{{dy}}{{dt}} = \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
So, shifting secant term to right side of equation,
$ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{1}{{{{\sec }^2}y}} \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Using trigonometric identity ${\sec ^2}x = {\tan ^2}x + 1$, we get ,
$ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{1}{{{{\tan }^2}y + 1}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}$
Substituting the value of tangent as $\tan y = \dfrac{{2t}}{{1 - {t^2}}}$
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{1}{{{{\left( {\dfrac{{2t}}{{1 - {t^2}}}} \right)}^2} + 1}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Computing the squares and taking LCM, we get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{1}{{\dfrac{{4{t^2} + {t^4} - 2{t^2} + 1}}{{{t^4} - 2{t^2} + 1}}}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Simplifying the expression,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \left( {\dfrac{{{t^4} - 2{t^2} + 1}}{{{t^4} + 2{t^2} + 1}}} \right) \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Condensing the expressions as whole squares,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{{{{\left( {1 - {t^2}} \right)}^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}} \times \dfrac{{2 + 2{t^2}}}{{{{\left( {1 - {t^2}} \right)}^2}}}\]
Cancelling the common terms in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{2}{{\left( {1 + {t^2}} \right)}} - - - - - \left( 1 \right)\]
Now, we differentiate \[\sin x = \dfrac{{2t}}{{1 + {t^2}}}\] with respect to t. So, we get,
\[\dfrac{d}{{dt}}\left( {\sin x} \right) = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\]
We know that derivative of sine is cosine. Using quotient rule on right side of equation, we get,
\[ \Rightarrow \cos x \times \dfrac{{dx}}{{dt}} = \dfrac{{\left( {1 + {t^2}} \right)\dfrac{d}{{dt}}\left( {2t} \right) - \left( {2t} \right)\dfrac{d}{{dt}}\left( {1 + {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using power rule of differentiation, we get,
\[ \Rightarrow \cos x \times \dfrac{{dx}}{{dt}} = \dfrac{{\left( {1 + {t^2}} \right)\left( 2 \right) - \left( {2t} \right)\left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Shifting cosine to right side of equation,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\cos x}} \times \dfrac{{2 + 2{t^2} - 4{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\cos x}} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}x} }} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Substituting value of sine,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)}^2}} }} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Computing whole squares and taking LCM,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{1}{{\sqrt {\dfrac{{1 + {t^4} + 2{t^2} - 4{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}} }} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{{\left( {1 + {t^2}} \right)}}{{\left( {1 - {t^2}} \right)}} \times \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{2}{{\left( {1 + {t^2}} \right)}} - - - - - \left( 2 \right)\]
Dividing equation $\left( 1 \right)$ by equation $\left( 2 \right)$, we get,
\[\dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}} = \dfrac{{\left[ {\dfrac{2}{{\left( {1 + {t^2}} \right)}}} \right]}}{{\left[ {\dfrac{2}{{\left( {1 + {t^2}} \right)}}} \right]}}\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 1\]
Hence, the correct answer is the option (C).
Note:
We must remember this method to find the derivatives of the parametric function. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
We can also solve the problem using trigonometric substitution as $t = \tan \theta $.
Then, we get, $\tan y = \dfrac{{2t}}{{1 - {t^2}}} = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
We know the double angle formula for tangent as $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$.
So, we get, $\tan y = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = \tan 2\theta $.
Taking tangent inverse function on both sides of equation,
$ \Rightarrow y = 2\theta $
Similarly, \[\sin x = \dfrac{{2t}}{{1 + {t^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\].
We know the double angle formula for sine in terms of tangent as \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]. Now, we get,
\[\sin x = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta \]
Taking sine inverse function on both sides,
\[ \Rightarrow x = 2\theta \]
Now, we can calculate the value of $\dfrac{{dy}}{{dx}}$ by chain rule $\dfrac{{\left( {\dfrac{{dy}}{{d\theta }}} \right)}}{{\left( {\dfrac{{dx}}{{d\theta }}} \right)}}$.
So, we get, \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{d}{{d\theta }}\left( {2\theta } \right)}}{{\dfrac{d}{{d\theta }}\left( {2\theta } \right)}}\]
Using the power rule of differentiation, we get,
\[\dfrac{{dy}}{{dx}} = \dfrac{2}{2} = 1\]
Hence, we get the same answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

