Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $\tan x=\dfrac{3}{4}, \pi < x < \dfrac{3 \pi}{2}$, then find the values of $\sin \dfrac{x}{2}, \cos \dfrac{x}{2}$ and $\tan \dfrac{x}{2}$.

Answer
VerifiedVerified
585.9k+ views
<b>Hint:</b> First we find the quadrant in which the angle $\dfrac{x}{2}$ lies and then by using the given value of $\tan x$ and using the half angle formulas we will find the value of $\tan \dfrac{x}{2}$. By using the value of $\tan \dfrac{x}{2}$ we can find the values of $\sin \dfrac{x}{2}, \cos \dfrac{x}{2}$ using half trigonometric relations and identity formulas.

<b>Complete step by step answer:</b>
Given that, $\tan x=\dfrac{3}{4}, \pi<x<\dfrac{3 \pi}{2}$
Divide the expression $\dfrac{\pi}{2}<\dfrac{x}{2}<\dfrac{3 \pi}{4}$
We generally use the below picture to identify the quadrant in the angle lies.

seo images

From the above figure we can say that the angle $\dfrac{x}{2}$ lies in second quadrant.

The signs of the trigonometric identities for the angle lies in different quadrants is demonstrated in below image.

seo images

Hence the signs of the different trigonometric identities of an angel $\dfrac{x}{2}$ are $\sin \left(\dfrac{x}{2}\right) \rightarrow+v e$

$\cos \left(\dfrac{x}{2}\right) \rightarrow-v e$

$\tan \left(\dfrac{x}{2}\right) \rightarrow-v e$

Now we have $\tan x=\dfrac{3}{4}$

Using the half angle formula $\tan x=\dfrac{2 \tan \left(\dfrac{x}{2}\right)}{1-\tan ^{2}\left(\dfrac{x}{2}\right)}$, then

$\dfrac{2 \tan \left(\dfrac{x}{2}\right)}{1-\tan ^{2}\left(\dfrac{x}{2}\right)}=\dfrac{3}{4}$

$8 \tan \left(\dfrac{x}{2}\right)=3-3 \tan ^{2}\left(\dfrac{x}{2}\right)$

$3 \tan ^{2}\left(\dfrac{x}{2}\right)+8 \tan \left(\dfrac{x}{2}\right)-3=0$

Solving the above quadratic equation. $3 \tan ^{2}\left(\dfrac{x}{2}\right)+8 \tan \left(\dfrac{x}{2}\right)-3=0$

$3 \tan ^{2}\left(\dfrac{x}{2}\right)+9 \tan \left(\dfrac{x}{2}\right)-\tan \left(\dfrac{x}{2}\right)-3=0$

$3 \tan \left(\dfrac{x}{2}\right)\left[\tan \left(\dfrac{x}{2}\right)+3\right]-1\left[\tan \left(\dfrac{x}{2}\right)+3\right]=0$

$\left(3 \tan \left(\dfrac{x}{2}\right)-1\right)\left(\tan \left(\dfrac{x}{2}\right)+3\right)=0$

Here we get the values of $\tan \left(\dfrac{x}{2}\right)$ as $\dfrac{1}{3}$ which is not acceptable because the angle $\dfrac{x}{2}$ lies in second quadrant then the value of $\tan \left(\dfrac{x}{2}\right)$ should be $-v e .$ So, the value of $\tan \left(\dfrac{x}{2}\right)$ is taken as $-3$. $\therefore \tan \left(\dfrac{x}{2}\right)=-3$ for $\dfrac{\pi}{2}<\dfrac{x}{2}<\dfrac{3 \pi}{4}$

Now from the formulas $\cos x=\dfrac{1}{\sec x}$ and $\sec ^{2} x-\tan ^{2} x=1$ we are finding the value of $\cos \left(\dfrac{x}{2}\right)$. So,

$\cos \left(\dfrac{x}{2}\right)=\dfrac{1}{\sec \left(\dfrac{x}{2}\right)}$

From the formula $\sec ^{2} x-\tan ^{2} x=1$ substituting $\sec x=\sqrt{1+\tan ^{2} x}$ in the above equation, then we have 

$\cos \left(\dfrac{x}{2}\right)=\dfrac{1}{\sqrt{1+\tan ^{2}\left(\dfrac{x}{2}\right)}}$

$=\dfrac{1}{\sqrt{1+(-3)^{2}}}$

$=\dfrac{1}{\sqrt{10}}$

But $\cos \left(\dfrac{x}{2}\right)=-\dfrac{1}{\sqrt{10}}$ for $\dfrac{\pi}{2}<\dfrac{x}{2}<\dfrac{3 \pi}{4}$

We have the relation between $\sin x, \cos x, \tan x$ as $\sin x=\tan x \times \cos x$, so

$\sin \left(\dfrac{x}{2}\right)=\tan \left(\dfrac{x}{2}\right) \times \cos \left(\dfrac{x}{2}\right)$

$=-3 \times\left(-\dfrac{1}{\sqrt{10}}\right)$

$=\dfrac{3}{\sqrt{10}}$

Hence $\sin \left(\dfrac{x}{2}\right)=\dfrac{3}{\sqrt{10}}$ for $\dfrac{\pi}{2}<\dfrac{x}{2}<\dfrac{3 \pi}{4}$


<b>Note:</b> Make sure that you have found the range of the angle $\dfrac{x}{2}$ and its quadrant. Based on the quadrant of the angle $\dfrac{x}{2}$ find the signs of the all trigonometric ratios. Based on the sign conventions, take the value of $\tan \left(\dfrac{x}{2}\right)$ carefully.