
If $\tan x=\dfrac{2b}{a-c}$,$(a\ne c)$, $y=a{{\cos }^{2}}x+2b\sin x\cos x+c{{\sin }^{2}}x$ and $z=a{{\sin }^{2}}x-2b\sin x\cos x+c{{\cos }^{2}}x$, then
a). $y=z$
b). $y+z=a+c$
c). $y-z=a-c$
d). \[y-z={{\left( a-c \right)}^{2}}+4{{b}^{2}}\]
Answer
493.5k+ views
Hint: We are asked to find the relation between y, z, a, b and c; with the given value of ‘y’ and ‘z’ in terms of trigonometric function and a, b, c. so we will simply find the value of $'y-z'$ as it is given in two options, if we got the value same as given in option then it is right, otherwise we will move to other options.
Complete step-by-step solution:
Moving ahead with the question in step wise manner we had,
$y=a{{\cos }^{2}}x+2b\sin x\cos x+c{{\sin }^{2}}x$
$z=a{{\sin }^{2}}x-2b\sin x\cos x+c{{\cos }^{2}}x$and
$\tan x=\dfrac{2b}{a-c}$,
So let us find out the value of $'y-z'$ as given in the two options, so we will get;
$y-z=a{{\cos }^{2}}x+2b\sin x+c{{\sin }^{2}}x-\left( a{{\sin }^{2}}x-2b\sin x\cos x+c{{\cos }^{2}}x \right)$
On further simplifying using the basic Mathematical operations and trigonometric identities, we will get;
$\begin{align}
&\Rightarrow y-z=a{{\cos }^{2}}x+2b\sin x\cos x+c{{\sin }^{2}}x-\left( a{{\sin }^{2}}x-2b\sin x\cos x+c{{\cos }^{2}}x \right) \\
&\Rightarrow y-z=a\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)+2b\left( 2\sin x\cos x \right)-c\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right) \\
\end{align}$
As we know that $\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)$ is equal to $\cos 2x$and$2\sin x\cos x$ equal to $\sin 2x$, so by using the same identity in above equation we will get;
$\begin{align}
&\Rightarrow y-z=a\cos 2x+2b\sin 2x-c\cos 2x \\
&\Rightarrow y-z=\cos 2x\left( a-c \right)+2b\sin 2x \\
\end{align}$
Since in the question we are given with the value of $\tan x$ in terms of a, b, c. so let us reduce the above trigonometric equation of $\tan x$. So as we know that $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$ and $\sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x}$, by using the same identity in above equation we will get;
$y-z=\left( \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right)\left( a-c \right)+2b\left( \dfrac{2\tan x}{1+{{\tan }^{2}}x} \right)$
On further simplifying it by taking the LCM we will get;
$y-z=\dfrac{\left( 1-{{\tan }^{2}}x \right)\left( a-c \right)+2b\left( 2\tan x \right)}{1+{{\tan }^{2}}x}$
As according to the given information we know that $\tan x=\dfrac{2b}{a-c}$, so replace $\tan x$ with the given information, so we will get;
\[y-z=\dfrac{\left( 1-{{\left( \dfrac{2b}{a-c} \right)}^{2}} \right)\left( a-c \right)+2b\left( 2\left( \dfrac{2b}{a-c} \right) \right)}{1+{{\left( \dfrac{2b}{a-c} \right)}^{2}}}\]
On solving we will get;
\[\begin{align}
&\Rightarrow y-z=\dfrac{\dfrac{\left( {{\left( a-c \right)}^{2}}-4{{b}^{2}} \right)+8{{b}^{2}}}{\left( a-c \right)}}{\dfrac{{{\left( a-c \right)}^{2}}+4{{b}^{2}}}{{{\left( a-c \right)}^{2}}}} \\
&\Rightarrow y-z=\dfrac{\left( {{a}^{2}}+{{c}^{2}}-2ac+4{{b}^{2}} \right)\left( a-c \right)}{{{\left( a-c \right)}^{2}}+4{{b}^{2}}} \\
\end{align}\]
So we got;
\[\begin{align}
&\Rightarrow y-z=\dfrac{{{\left( a-c \right)}^{2}}+4{{b}^{2}}\left( a-c \right)}{{{\left( a-c \right)}^{2}}+4{{b}^{2}}} \\
&\Rightarrow y-z=a-c \\
\end{align}\]
So on simplifying we got \[y-z=a-c\] which is equal to option ‘c’.
Hence the correct answer is option ‘c’ i.e. \[y-z=a-c\].
Note: Motive behind first finding the value of $'y-z'$ is only because of its presence in more than one option, other than this we can go with $'y+z'$, then we will get the relation which will be not equal to given option, so then also correct answer will be option ‘c’.
Complete step-by-step solution:
Moving ahead with the question in step wise manner we had,
$y=a{{\cos }^{2}}x+2b\sin x\cos x+c{{\sin }^{2}}x$
$z=a{{\sin }^{2}}x-2b\sin x\cos x+c{{\cos }^{2}}x$and
$\tan x=\dfrac{2b}{a-c}$,
So let us find out the value of $'y-z'$ as given in the two options, so we will get;
$y-z=a{{\cos }^{2}}x+2b\sin x+c{{\sin }^{2}}x-\left( a{{\sin }^{2}}x-2b\sin x\cos x+c{{\cos }^{2}}x \right)$
On further simplifying using the basic Mathematical operations and trigonometric identities, we will get;
$\begin{align}
&\Rightarrow y-z=a{{\cos }^{2}}x+2b\sin x\cos x+c{{\sin }^{2}}x-\left( a{{\sin }^{2}}x-2b\sin x\cos x+c{{\cos }^{2}}x \right) \\
&\Rightarrow y-z=a\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)+2b\left( 2\sin x\cos x \right)-c\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right) \\
\end{align}$
As we know that $\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)$ is equal to $\cos 2x$and$2\sin x\cos x$ equal to $\sin 2x$, so by using the same identity in above equation we will get;
$\begin{align}
&\Rightarrow y-z=a\cos 2x+2b\sin 2x-c\cos 2x \\
&\Rightarrow y-z=\cos 2x\left( a-c \right)+2b\sin 2x \\
\end{align}$
Since in the question we are given with the value of $\tan x$ in terms of a, b, c. so let us reduce the above trigonometric equation of $\tan x$. So as we know that $\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}$ and $\sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x}$, by using the same identity in above equation we will get;
$y-z=\left( \dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} \right)\left( a-c \right)+2b\left( \dfrac{2\tan x}{1+{{\tan }^{2}}x} \right)$
On further simplifying it by taking the LCM we will get;
$y-z=\dfrac{\left( 1-{{\tan }^{2}}x \right)\left( a-c \right)+2b\left( 2\tan x \right)}{1+{{\tan }^{2}}x}$
As according to the given information we know that $\tan x=\dfrac{2b}{a-c}$, so replace $\tan x$ with the given information, so we will get;
\[y-z=\dfrac{\left( 1-{{\left( \dfrac{2b}{a-c} \right)}^{2}} \right)\left( a-c \right)+2b\left( 2\left( \dfrac{2b}{a-c} \right) \right)}{1+{{\left( \dfrac{2b}{a-c} \right)}^{2}}}\]
On solving we will get;
\[\begin{align}
&\Rightarrow y-z=\dfrac{\dfrac{\left( {{\left( a-c \right)}^{2}}-4{{b}^{2}} \right)+8{{b}^{2}}}{\left( a-c \right)}}{\dfrac{{{\left( a-c \right)}^{2}}+4{{b}^{2}}}{{{\left( a-c \right)}^{2}}}} \\
&\Rightarrow y-z=\dfrac{\left( {{a}^{2}}+{{c}^{2}}-2ac+4{{b}^{2}} \right)\left( a-c \right)}{{{\left( a-c \right)}^{2}}+4{{b}^{2}}} \\
\end{align}\]
So we got;
\[\begin{align}
&\Rightarrow y-z=\dfrac{{{\left( a-c \right)}^{2}}+4{{b}^{2}}\left( a-c \right)}{{{\left( a-c \right)}^{2}}+4{{b}^{2}}} \\
&\Rightarrow y-z=a-c \\
\end{align}\]
So on simplifying we got \[y-z=a-c\] which is equal to option ‘c’.
Hence the correct answer is option ‘c’ i.e. \[y-z=a-c\].
Note: Motive behind first finding the value of $'y-z'$ is only because of its presence in more than one option, other than this we can go with $'y+z'$, then we will get the relation which will be not equal to given option, so then also correct answer will be option ‘c’.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

