
If $\tan x+\tan \left( x+\dfrac{\pi }{3} \right)+\tan \left( x+\dfrac{2\pi }{3} \right)=3$, then prove that \[\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}=1\].
Answer
610.2k+ views
Hint: We will be using the concept of trigonometric identities to solve the problem. We will first expand the given equation with the help of trigonometric formula that,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ to further simplify the problem and then simplify the solution.
Complete step-by-step answer:
Now, we have been given that $\tan x+\tan \left( x+\dfrac{\pi }{3} \right)+\tan \left( x+\dfrac{2\pi }{3} \right)=3$.
Now, we will be using the trigonometric identity that,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
Therefore, we have,
$\tan x+\dfrac{\tan x+\tan \left( \dfrac{\pi }{3} \right)}{1-\tan x\tan \left( \dfrac{\pi }{3}
\right)}+\dfrac{\tan \left( x \right)+\tan \left( \dfrac{2\pi }{3} \right)}{1-\tan \left( x
\right)\tan \left( \dfrac{2\pi }{3} \right)}=3$
Now, we will be using the fact that,
$\begin{align}
& \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3} \\
& \tan \left( \dfrac{2\pi }{3} \right)=-\sqrt{3} \\
\end{align}$
So, using this we have,
$\tan x+\dfrac{\tan x+\sqrt{3}}{1-\sqrt{3}\tan x}+\dfrac{\tan \left( x \right)-\sqrt{3}}{1+\sqrt{3}\tan \left( x \right)}=3$
Now, we will take $\left( 1-3{{\tan }^{2}}x \right)$ as LCM. So, we have,
$\dfrac{\tan x\left( 1-3{{\tan }^{2}}x \right)+\left( \tan x+\sqrt{3} \right)\left( 1+\sqrt{3}\tan x
\right)+\left( \tan x-\sqrt{3} \right)\left( 1-\sqrt{3}\tan x \right)}{1-3{{\tan }^{2}}x}=3$
Now, on simplifying the numerator by further expanding the terms we have,
$\begin{align}
& \dfrac{\tan x-3{{\tan }^{3}}x+\tan x+\sqrt{3}{{\tan }^{2}}x+\sqrt{3}+3\tan x+\tan x-\sqrt{3}{{\tan }^{2}}x-\sqrt{3}+3\tan x}{1-3{{\tan }^{2}}x}=3 \\
& \dfrac{9\tan x-3{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}=3 \\
\end{align}$
Now, we will take 3 common numerators. So, we have,
$\begin{align}
& \dfrac{3\left( 3\tan x-{{\tan }^{3}}x \right)}{1-3{{\tan }^{2}}x}=3 \\
& \dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}=1 \\
\end{align}$
So, we have proved that,
\[\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}=1\] if $\tan x+\tan \left( x+\dfrac{\pi }{3}
\right)+\tan \left( x+\dfrac{2\pi }{3} \right)=3$.
Note: It is important to note that we have used the trigonometric formula that $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ to simplify the data given to us i.e. $\tan x+\tan \left( x+\dfrac{\pi }{3} \right)+\tan \left( x+\dfrac{2\pi }{3} \right)=3$ and then simplify the given equation further to complete the proof.
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ to further simplify the problem and then simplify the solution.
Complete step-by-step answer:
Now, we have been given that $\tan x+\tan \left( x+\dfrac{\pi }{3} \right)+\tan \left( x+\dfrac{2\pi }{3} \right)=3$.
Now, we will be using the trigonometric identity that,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
Therefore, we have,
$\tan x+\dfrac{\tan x+\tan \left( \dfrac{\pi }{3} \right)}{1-\tan x\tan \left( \dfrac{\pi }{3}
\right)}+\dfrac{\tan \left( x \right)+\tan \left( \dfrac{2\pi }{3} \right)}{1-\tan \left( x
\right)\tan \left( \dfrac{2\pi }{3} \right)}=3$
Now, we will be using the fact that,
$\begin{align}
& \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3} \\
& \tan \left( \dfrac{2\pi }{3} \right)=-\sqrt{3} \\
\end{align}$
So, using this we have,
$\tan x+\dfrac{\tan x+\sqrt{3}}{1-\sqrt{3}\tan x}+\dfrac{\tan \left( x \right)-\sqrt{3}}{1+\sqrt{3}\tan \left( x \right)}=3$
Now, we will take $\left( 1-3{{\tan }^{2}}x \right)$ as LCM. So, we have,
$\dfrac{\tan x\left( 1-3{{\tan }^{2}}x \right)+\left( \tan x+\sqrt{3} \right)\left( 1+\sqrt{3}\tan x
\right)+\left( \tan x-\sqrt{3} \right)\left( 1-\sqrt{3}\tan x \right)}{1-3{{\tan }^{2}}x}=3$
Now, on simplifying the numerator by further expanding the terms we have,
$\begin{align}
& \dfrac{\tan x-3{{\tan }^{3}}x+\tan x+\sqrt{3}{{\tan }^{2}}x+\sqrt{3}+3\tan x+\tan x-\sqrt{3}{{\tan }^{2}}x-\sqrt{3}+3\tan x}{1-3{{\tan }^{2}}x}=3 \\
& \dfrac{9\tan x-3{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}=3 \\
\end{align}$
Now, we will take 3 common numerators. So, we have,
$\begin{align}
& \dfrac{3\left( 3\tan x-{{\tan }^{3}}x \right)}{1-3{{\tan }^{2}}x}=3 \\
& \dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}=1 \\
\end{align}$
So, we have proved that,
\[\dfrac{3\tan x-{{\tan }^{3}}x}{1-3{{\tan }^{2}}x}=1\] if $\tan x+\tan \left( x+\dfrac{\pi }{3}
\right)+\tan \left( x+\dfrac{2\pi }{3} \right)=3$.
Note: It is important to note that we have used the trigonometric formula that $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ to simplify the data given to us i.e. $\tan x+\tan \left( x+\dfrac{\pi }{3} \right)+\tan \left( x+\dfrac{2\pi }{3} \right)=3$ and then simplify the given equation further to complete the proof.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

