
If $\tan \varphi + \cot \varphi = 2$ then the value of ${\tan ^{100}}\varphi + {\cot ^{100}}\varphi = $
A) 1
B) 2
C) 3
D) 0
Answer
569.4k+ views
Hint:
From the given condition we use the ratio $\cot \varphi = \dfrac{{\sin \varphi }}{{\cos \varphi }}$and hence we get a quadratic equation in ${\tan ^2}\varphi $ and solving this using splitting the middle term method we get the value of $\varphi $and using this we get the value of ${\tan ^{100}}\varphi + {\cot ^{100}}\varphi $
Complete step by step solution:
We are given that $\tan \varphi + \cot \varphi = 2$………..(1)
We know that $\cot \varphi = \dfrac{{\sin \varphi }}{{\cos \varphi }}$
This is nothing other than $\dfrac{1}{{\dfrac{{\sin \varphi }}{{\cos \varphi }}}} = \dfrac{1}{{\tan \varphi }}$
Using this in (1) we get
$
\Rightarrow \tan \varphi + \dfrac{1}{{\tan \varphi }} = 2 \\
\Rightarrow {\tan ^2}\varphi + 1 = 2\tan \varphi \\
\Rightarrow {\tan ^2}\varphi - 2\tan \varphi + 1 = 0 \\
$
Now we get a quadratic equation in ${\tan ^2}\varphi $
This can be solved using splitting the middle term method
Hence here our middle term can be split as $ - \tan \varphi - \tan \varphi $
$
\Rightarrow {\tan ^2}\varphi - \tan \varphi - \tan \varphi + 1 = 0 \\
\Rightarrow \tan \varphi \left( {\tan \varphi - 1} \right) - 1\left( {\tan \varphi - 1} \right) = 0 \\
\Rightarrow \left( {\tan \varphi - 1} \right)\left( {\tan \varphi - 1} \right) = 0 \\
\Rightarrow {\left( {\tan \varphi - 1} \right)^2} = 0 \\
$
Hence here we get that $\tan \varphi = 1$
Using the trigonometric values , we know that $\tan 45 = 1$
Hence $\varphi = 45$ ……(2)
Now we are asked to find the value of ${\tan ^{100}}\varphi + {\cot ^{100}}\varphi $
Lets use the value of $\varphi $ in the above equation
$
\Rightarrow {\tan ^{100}}45 + {\cot ^{100}}45 \\
\Rightarrow {\left( {\tan 45} \right)^{100}} + {\left( {\cot 45} \right)^{100}} \\
\Rightarrow {\left( 1 \right)^{100}} + {\left( 1 \right)^{100}} \\
\Rightarrow 1 + 1 \\
\Rightarrow 2 \\
$
Hence we get the required value
Therefore the correct option is B.
Additional information :
1) The other trigonometric values of tan are given as
$\tan 0 = 0;\tan 30 = \dfrac{1}{{\sqrt 3 }};\tan 60 = \sqrt 3 $
2) Steps to keep in mind while solving trigonometric problems are
2.1) Always start from the more complex side
2.2) Express everything into sine and cosine
Note:
Here the quadratic equation can also be solved using the quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow {\tan ^2}\varphi - 2\tan \varphi + 1 = 0$
Here a = 1 , b = -2 and c = 1
$
\Rightarrow \tan \varphi = \dfrac{{2 \pm \sqrt {{{( - 2)}^2} - 4(1)(1)} }}{{2(1)}} \\
\Rightarrow \tan \varphi = \dfrac{{2 \pm \sqrt {4 - 4} }}{2} \\
\Rightarrow \tan \varphi = \dfrac{2}{2} = 1 \\
$
From the given condition we use the ratio $\cot \varphi = \dfrac{{\sin \varphi }}{{\cos \varphi }}$and hence we get a quadratic equation in ${\tan ^2}\varphi $ and solving this using splitting the middle term method we get the value of $\varphi $and using this we get the value of ${\tan ^{100}}\varphi + {\cot ^{100}}\varphi $
Complete step by step solution:
We are given that $\tan \varphi + \cot \varphi = 2$………..(1)
We know that $\cot \varphi = \dfrac{{\sin \varphi }}{{\cos \varphi }}$
This is nothing other than $\dfrac{1}{{\dfrac{{\sin \varphi }}{{\cos \varphi }}}} = \dfrac{1}{{\tan \varphi }}$
Using this in (1) we get
$
\Rightarrow \tan \varphi + \dfrac{1}{{\tan \varphi }} = 2 \\
\Rightarrow {\tan ^2}\varphi + 1 = 2\tan \varphi \\
\Rightarrow {\tan ^2}\varphi - 2\tan \varphi + 1 = 0 \\
$
Now we get a quadratic equation in ${\tan ^2}\varphi $
This can be solved using splitting the middle term method
Hence here our middle term can be split as $ - \tan \varphi - \tan \varphi $
$
\Rightarrow {\tan ^2}\varphi - \tan \varphi - \tan \varphi + 1 = 0 \\
\Rightarrow \tan \varphi \left( {\tan \varphi - 1} \right) - 1\left( {\tan \varphi - 1} \right) = 0 \\
\Rightarrow \left( {\tan \varphi - 1} \right)\left( {\tan \varphi - 1} \right) = 0 \\
\Rightarrow {\left( {\tan \varphi - 1} \right)^2} = 0 \\
$
Hence here we get that $\tan \varphi = 1$
Using the trigonometric values , we know that $\tan 45 = 1$
Hence $\varphi = 45$ ……(2)
Now we are asked to find the value of ${\tan ^{100}}\varphi + {\cot ^{100}}\varphi $
Lets use the value of $\varphi $ in the above equation
$
\Rightarrow {\tan ^{100}}45 + {\cot ^{100}}45 \\
\Rightarrow {\left( {\tan 45} \right)^{100}} + {\left( {\cot 45} \right)^{100}} \\
\Rightarrow {\left( 1 \right)^{100}} + {\left( 1 \right)^{100}} \\
\Rightarrow 1 + 1 \\
\Rightarrow 2 \\
$
Hence we get the required value
Therefore the correct option is B.
Additional information :
1) The other trigonometric values of tan are given as
$\tan 0 = 0;\tan 30 = \dfrac{1}{{\sqrt 3 }};\tan 60 = \sqrt 3 $
2) Steps to keep in mind while solving trigonometric problems are
2.1) Always start from the more complex side
2.2) Express everything into sine and cosine
Note:
Here the quadratic equation can also be solved using the quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow {\tan ^2}\varphi - 2\tan \varphi + 1 = 0$
Here a = 1 , b = -2 and c = 1
$
\Rightarrow \tan \varphi = \dfrac{{2 \pm \sqrt {{{( - 2)}^2} - 4(1)(1)} }}{{2(1)}} \\
\Rightarrow \tan \varphi = \dfrac{{2 \pm \sqrt {4 - 4} }}{2} \\
\Rightarrow \tan \varphi = \dfrac{2}{2} = 1 \\
$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

