
If \[\tan \theta = \dfrac{{x\sin \varphi }}{{1 - x\cos \varphi }}\] and \[\tan \varphi = \dfrac{{y\sin \theta }}{{1 - y\cos \theta }}\] then \[\dfrac{x}{y}\] is equal to
(A) \[\dfrac{{\sin \varphi }}{{\sin \theta }}\]
(B) \[\dfrac{{\sin \theta }}{{\sin \varphi }}\]
(C) \[\dfrac{{\sin \theta }}{{1 - \cos \theta }}\]
(D) \[\dfrac{{\sin \theta }}{{1 - \cos \varphi }}\]
Answer
579.6k+ views
Hint: First of all, do the inverse of both equation and the solve equation by breaking the terms in numerator and then substituting the values of trigonometric terms in fractions as other terms and shifting all the values to one side and the variable x or y to other side to form two separate equations. Then we take the ratio of that equation and find the value of \[\dfrac{x}{y}\].
Inverse of an element is that value of an element which when taken reciprocal of gives the element itself.
Complete step-by-step answer:
Let’s solve, the
\[\tan \theta = \dfrac{{x\sin \varphi }}{{1 - x\cos \varphi }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \theta = \dfrac{{1 - x\cos \varphi }}{{x\sin \varphi }}\]
Now separate the terms in the numerator i.e.1 and\[x\cos \varphi \].
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \dfrac{{x\cos \varphi }}{{x\sin \varphi }}\]
Put the value of \[\cot \varphi = \dfrac{{\cos \varphi }}{{\sin \varphi }}\]
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \cot \varphi \]
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{x\sin \varphi }}\] (Equation 1)
Now, take
\[\tan \varphi = \dfrac{{y\sin \theta }}{{1 - y\cos \theta }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \varphi = \dfrac{{1 - y\cos \theta }}{{y\sin \theta }}\]
Now separate the terms in the numerator i.e. 1 and\[y\cos \theta \].
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \dfrac{{y\cos \theta }}{{y\sin \theta }}\]
Cancel out the same terms from numerator and denominator.
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \cot \theta \]
Shift the same trigonometric values to one side of the equation.
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{y\sin \theta }}\] (Equation 2)
Now divide equation 1 to equation 2 we get,
$\Rightarrow$\[\dfrac{{\cot \theta + \cot \varphi }}{{\cot \theta + \cot \varphi }} = \dfrac{{\dfrac{1}{{x\sin \varphi }}}}{{\dfrac{1}{{y\sin \theta }}}}\]
Cancel out the same terms from the numerator and denominator in LHS of the equation.
$\Rightarrow$\[1 = \dfrac{{y\sin \theta }}{{x\sin \varphi }}\]
Shift the variables to left hand side of the equation
$\Rightarrow$\[\dfrac{x}{y} = \dfrac{{\sin \theta }}{{\sin \varphi }}\]
$\therefore$ The value of \[\dfrac{x}{y}\] is \[\dfrac{{\sin \theta }}{{\sin \varphi }}\]. Therefore, option A is correct.
Note:
In the beginning of the question we take inverse on both sides so don’t forget to take the inverse of \[\tan \theta \].
And the inverse of \[\tan \theta \] is \[\cot \theta \]. Some students forgot to do the inverse and got errors in answers.
Students can transform the trigonometric terms by dividing or multiplying the terms with any other term so as to make the solution easy.
Inverse of an element is that value of an element which when taken reciprocal of gives the element itself.
Complete step-by-step answer:
Let’s solve, the
\[\tan \theta = \dfrac{{x\sin \varphi }}{{1 - x\cos \varphi }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \theta = \dfrac{{1 - x\cos \varphi }}{{x\sin \varphi }}\]
Now separate the terms in the numerator i.e.1 and\[x\cos \varphi \].
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \dfrac{{x\cos \varphi }}{{x\sin \varphi }}\]
Put the value of \[\cot \varphi = \dfrac{{\cos \varphi }}{{\sin \varphi }}\]
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \cot \varphi \]
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{x\sin \varphi }}\] (Equation 1)
Now, take
\[\tan \varphi = \dfrac{{y\sin \theta }}{{1 - y\cos \theta }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \varphi = \dfrac{{1 - y\cos \theta }}{{y\sin \theta }}\]
Now separate the terms in the numerator i.e. 1 and\[y\cos \theta \].
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \dfrac{{y\cos \theta }}{{y\sin \theta }}\]
Cancel out the same terms from numerator and denominator.
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \cot \theta \]
Shift the same trigonometric values to one side of the equation.
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{y\sin \theta }}\] (Equation 2)
Now divide equation 1 to equation 2 we get,
$\Rightarrow$\[\dfrac{{\cot \theta + \cot \varphi }}{{\cot \theta + \cot \varphi }} = \dfrac{{\dfrac{1}{{x\sin \varphi }}}}{{\dfrac{1}{{y\sin \theta }}}}\]
Cancel out the same terms from the numerator and denominator in LHS of the equation.
$\Rightarrow$\[1 = \dfrac{{y\sin \theta }}{{x\sin \varphi }}\]
Shift the variables to left hand side of the equation
$\Rightarrow$\[\dfrac{x}{y} = \dfrac{{\sin \theta }}{{\sin \varphi }}\]
$\therefore$ The value of \[\dfrac{x}{y}\] is \[\dfrac{{\sin \theta }}{{\sin \varphi }}\]. Therefore, option A is correct.
Note:
In the beginning of the question we take inverse on both sides so don’t forget to take the inverse of \[\tan \theta \].
And the inverse of \[\tan \theta \] is \[\cot \theta \]. Some students forgot to do the inverse and got errors in answers.
Students can transform the trigonometric terms by dividing or multiplying the terms with any other term so as to make the solution easy.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

