
If \[\tan \theta = \dfrac{{x\sin \varphi }}{{1 - x\cos \varphi }}\] and \[\tan \varphi = \dfrac{{y\sin \theta }}{{1 - y\cos \theta }}\] then \[\dfrac{x}{y}\] is equal to
(A) \[\dfrac{{\sin \varphi }}{{\sin \theta }}\]
(B) \[\dfrac{{\sin \theta }}{{\sin \varphi }}\]
(C) \[\dfrac{{\sin \theta }}{{1 - \cos \theta }}\]
(D) \[\dfrac{{\sin \theta }}{{1 - \cos \varphi }}\]
Answer
594.6k+ views
Hint: First of all, do the inverse of both equation and the solve equation by breaking the terms in numerator and then substituting the values of trigonometric terms in fractions as other terms and shifting all the values to one side and the variable x or y to other side to form two separate equations. Then we take the ratio of that equation and find the value of \[\dfrac{x}{y}\].
Inverse of an element is that value of an element which when taken reciprocal of gives the element itself.
Complete step-by-step answer:
Let’s solve, the
\[\tan \theta = \dfrac{{x\sin \varphi }}{{1 - x\cos \varphi }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \theta = \dfrac{{1 - x\cos \varphi }}{{x\sin \varphi }}\]
Now separate the terms in the numerator i.e.1 and\[x\cos \varphi \].
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \dfrac{{x\cos \varphi }}{{x\sin \varphi }}\]
Put the value of \[\cot \varphi = \dfrac{{\cos \varphi }}{{\sin \varphi }}\]
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \cot \varphi \]
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{x\sin \varphi }}\] (Equation 1)
Now, take
\[\tan \varphi = \dfrac{{y\sin \theta }}{{1 - y\cos \theta }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \varphi = \dfrac{{1 - y\cos \theta }}{{y\sin \theta }}\]
Now separate the terms in the numerator i.e. 1 and\[y\cos \theta \].
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \dfrac{{y\cos \theta }}{{y\sin \theta }}\]
Cancel out the same terms from numerator and denominator.
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \cot \theta \]
Shift the same trigonometric values to one side of the equation.
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{y\sin \theta }}\] (Equation 2)
Now divide equation 1 to equation 2 we get,
$\Rightarrow$\[\dfrac{{\cot \theta + \cot \varphi }}{{\cot \theta + \cot \varphi }} = \dfrac{{\dfrac{1}{{x\sin \varphi }}}}{{\dfrac{1}{{y\sin \theta }}}}\]
Cancel out the same terms from the numerator and denominator in LHS of the equation.
$\Rightarrow$\[1 = \dfrac{{y\sin \theta }}{{x\sin \varphi }}\]
Shift the variables to left hand side of the equation
$\Rightarrow$\[\dfrac{x}{y} = \dfrac{{\sin \theta }}{{\sin \varphi }}\]
$\therefore$ The value of \[\dfrac{x}{y}\] is \[\dfrac{{\sin \theta }}{{\sin \varphi }}\]. Therefore, option A is correct.
Note:
In the beginning of the question we take inverse on both sides so don’t forget to take the inverse of \[\tan \theta \].
And the inverse of \[\tan \theta \] is \[\cot \theta \]. Some students forgot to do the inverse and got errors in answers.
Students can transform the trigonometric terms by dividing or multiplying the terms with any other term so as to make the solution easy.
Inverse of an element is that value of an element which when taken reciprocal of gives the element itself.
Complete step-by-step answer:
Let’s solve, the
\[\tan \theta = \dfrac{{x\sin \varphi }}{{1 - x\cos \varphi }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \theta = \dfrac{{1 - x\cos \varphi }}{{x\sin \varphi }}\]
Now separate the terms in the numerator i.e.1 and\[x\cos \varphi \].
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \dfrac{{x\cos \varphi }}{{x\sin \varphi }}\]
Put the value of \[\cot \varphi = \dfrac{{\cos \varphi }}{{\sin \varphi }}\]
$\Rightarrow$\[\cot \theta = \dfrac{1}{{x\sin \varphi }} - \cot \varphi \]
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{x\sin \varphi }}\] (Equation 1)
Now, take
\[\tan \varphi = \dfrac{{y\sin \theta }}{{1 - y\cos \theta }}\]
In above equation do the inverse on both side,
$\Rightarrow$\[\cot \varphi = \dfrac{{1 - y\cos \theta }}{{y\sin \theta }}\]
Now separate the terms in the numerator i.e. 1 and\[y\cos \theta \].
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \dfrac{{y\cos \theta }}{{y\sin \theta }}\]
Cancel out the same terms from numerator and denominator.
$\Rightarrow$\[\cot \varphi = \dfrac{1}{{y\sin \theta }} - \cot \theta \]
Shift the same trigonometric values to one side of the equation.
$\Rightarrow$\[\cot \theta + \cot \varphi = \dfrac{1}{{y\sin \theta }}\] (Equation 2)
Now divide equation 1 to equation 2 we get,
$\Rightarrow$\[\dfrac{{\cot \theta + \cot \varphi }}{{\cot \theta + \cot \varphi }} = \dfrac{{\dfrac{1}{{x\sin \varphi }}}}{{\dfrac{1}{{y\sin \theta }}}}\]
Cancel out the same terms from the numerator and denominator in LHS of the equation.
$\Rightarrow$\[1 = \dfrac{{y\sin \theta }}{{x\sin \varphi }}\]
Shift the variables to left hand side of the equation
$\Rightarrow$\[\dfrac{x}{y} = \dfrac{{\sin \theta }}{{\sin \varphi }}\]
$\therefore$ The value of \[\dfrac{x}{y}\] is \[\dfrac{{\sin \theta }}{{\sin \varphi }}\]. Therefore, option A is correct.
Note:
In the beginning of the question we take inverse on both sides so don’t forget to take the inverse of \[\tan \theta \].
And the inverse of \[\tan \theta \] is \[\cot \theta \]. Some students forgot to do the inverse and got errors in answers.
Students can transform the trigonometric terms by dividing or multiplying the terms with any other term so as to make the solution easy.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

