
If $\tan \theta =\dfrac{a}{b}$ , then $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$ is equal to
a)$\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}$
b)$\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}$
c)$\dfrac{a+b}{a-b}$
d)$\dfrac{a-b}{a+b}$
Answer
609k+ views
Hint: Here, first we have to divide the numerator and denominator of the function $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$ by $\cos \theta $ and also use the concept that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$. Then, by simplification we can obtain the value of $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$.
Complete step-by-step answer:
Here, we are given that $\tan \theta =\dfrac{a}{b}$.
Now, we have to find the value of $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$.
Here, divide the numerator and denominator of the function $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$ by $\cos \theta $, we obtain:
$\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }=\dfrac{\dfrac{a\sin \theta
+b\cos \theta }{\cos \theta }}{\dfrac{a\sin \theta -b\cos \theta }{\cos \theta }}$
Next, by splitting the function,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{\dfrac{a\sin \theta }{\cos \theta }+\dfrac{b\cos \theta }{\cos \theta }}{\dfrac{a\sin
\theta }{\cos \theta }-\dfrac{b\cos \theta }{\cos \theta }}$
We know that,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Now, by substituting this in the above function,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }=\dfrac{a\tan \theta +\dfrac{b\cos \theta }{\cos \theta }}{a\tan \theta -\dfrac{b\cos \theta }{\cos \theta }}$
Next, by cancellation of $\cos \theta $,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }=\dfrac{a\tan \theta +b}{a\tan \theta -b}$
Now, by substituting the value of $\tan \theta =\dfrac{a}{b}$,
$\begin{align}
& \Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{a\times \dfrac{a}{b}+b}{a\times \dfrac{a}{b}-b} \\
& \Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{\dfrac{{{a}^{2}}}{b}+b}{\dfrac{{{a}^{2}}}{b}-b} \\
\end{align}$
Next, by taking LCM,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{\dfrac{{{a}^{2}}+{{b}^{2}}}{b}}{\dfrac{{{a}^{2}}-{{b}^{2}}}{b}}$
We know that,
$\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}$
Hence, we can write:
$\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{{{a}^{2}}+{{b}^{2}}}{b}\times \dfrac{b}{{{a}^{2}}-{{b}^{2}}}$
Next, by cancellation,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}$
Therefore, we can say that the value of $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta
-b\cos \theta }=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}$.
Hence, the correct answer for this question is option (b).
Note: Here, we can also solve this problem by using the definition of $\tan \theta $ that is, $\tan \theta =\dfrac{opposite\text{ }side}{adjacent\text{ }side}$. First we have to find the hypotenuse of the triangle by using the concept of Pythagoras theorem, where the square of the hypotenuse is the sum of the squares of adjacent side and opposite side. Then, we have to find the values of $\sin \theta $ and $\cos \theta $ and substitute in the function $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$.
Complete step-by-step answer:
Here, we are given that $\tan \theta =\dfrac{a}{b}$.
Now, we have to find the value of $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$.
Here, divide the numerator and denominator of the function $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$ by $\cos \theta $, we obtain:
$\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }=\dfrac{\dfrac{a\sin \theta
+b\cos \theta }{\cos \theta }}{\dfrac{a\sin \theta -b\cos \theta }{\cos \theta }}$
Next, by splitting the function,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{\dfrac{a\sin \theta }{\cos \theta }+\dfrac{b\cos \theta }{\cos \theta }}{\dfrac{a\sin
\theta }{\cos \theta }-\dfrac{b\cos \theta }{\cos \theta }}$
We know that,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Now, by substituting this in the above function,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }=\dfrac{a\tan \theta +\dfrac{b\cos \theta }{\cos \theta }}{a\tan \theta -\dfrac{b\cos \theta }{\cos \theta }}$
Next, by cancellation of $\cos \theta $,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }=\dfrac{a\tan \theta +b}{a\tan \theta -b}$
Now, by substituting the value of $\tan \theta =\dfrac{a}{b}$,
$\begin{align}
& \Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{a\times \dfrac{a}{b}+b}{a\times \dfrac{a}{b}-b} \\
& \Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{\dfrac{{{a}^{2}}}{b}+b}{\dfrac{{{a}^{2}}}{b}-b} \\
\end{align}$
Next, by taking LCM,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{\dfrac{{{a}^{2}}+{{b}^{2}}}{b}}{\dfrac{{{a}^{2}}-{{b}^{2}}}{b}}$
We know that,
$\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}$
Hence, we can write:
$\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{{{a}^{2}}+{{b}^{2}}}{b}\times \dfrac{b}{{{a}^{2}}-{{b}^{2}}}$
Next, by cancellation,
$\Rightarrow \dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta
}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}$
Therefore, we can say that the value of $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta
-b\cos \theta }=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}$.
Hence, the correct answer for this question is option (b).
Note: Here, we can also solve this problem by using the definition of $\tan \theta $ that is, $\tan \theta =\dfrac{opposite\text{ }side}{adjacent\text{ }side}$. First we have to find the hypotenuse of the triangle by using the concept of Pythagoras theorem, where the square of the hypotenuse is the sum of the squares of adjacent side and opposite side. Then, we have to find the values of $\sin \theta $ and $\cos \theta $ and substitute in the function $\dfrac{a\sin \theta +b\cos \theta }{a\sin \theta -b\cos \theta }$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

