
If $ \tan \theta +\tan 2\theta +\sqrt{3}\tan \theta \tan 2\theta =\sqrt{3} $ , then \[\]
A. $ \theta =\left( 6n+1 \right)\dfrac{\pi }{18},\forall n\in I $ \[\]
B. $ \theta =\left( 6n+1 \right)\dfrac{\pi }{9},\forall n\in I $ \[\]
C. $ \theta =\left( 3n+1 \right)\dfrac{\pi }{9},\forall n\in I $ \[\]
D. $ \theta =\left( 6n+1 \right)\dfrac{\pi }{18},\forall n\in I $ \[\]
Answer
578.7k+ views
Hint: We take $ \sqrt{3}\tan \theta \tan 2\theta $ to the right hand side, take $ \sqrt{3} $ common and divide both sides by $ 1-\tan \theta \tan 2\theta $ . We express the obtained expression at the left hand side in the form of $ \tan \left( A+B \right) $ suing the formula $ \dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}=\tan \left( A+B \right) $ . We find the solutions of the equation in tangent $ \tan x=\tan \alpha $ as $ x=n\pi +\alpha $ .
Complete step-by-step answer:
We know from tangent sum of the angles formula that for any two angles with measures $ A $ and $ B $ we have
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\]
We can also find the value of $ \tan {{60}^{\circ }} $ by converting it to the ratio of sine and cosine. We have
\[\tan {{60}^{\circ }}=\dfrac{\sin {{60}^{\circ }}}{\cos {{60}^{\circ }}}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}=\sqrt{3}\]
We convert $ {{60}^{\circ }} $ into radian and have
\[\begin{align}
& {{60}^{\circ }}=\dfrac{{{60}^{\circ }}}{{{180}^{\circ }}}\times \pi =\dfrac{\pi }{3} \\
& \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\tan \left( {{60}^{\circ }} \right)=\sqrt{3} \\
\end{align}\]
We also know that the solutions of the equation $ \tan x=\tan \alpha $ (where $ x $ is the unknown variable and $ \alpha $ is measure of angle) are given by
\[x=n\pi +\alpha \]
Here $ n $ is any integer , so we have $ n\in I $ .
We are given the question a trigonometric equation in tangent of any acute angle $ \theta $ as
\[\tan \theta +\tan 2\theta +\sqrt{3}\tan \theta \tan 2\theta =\sqrt{3}\]
Let us collect the terms having $ \sqrt{3} $ at the right hand side of the equation. We have
\[\Rightarrow \tan \theta +\tan 2\theta =\sqrt{3}-\sqrt{3}\tan \theta \tan 2\theta \]
We take $ \sqrt{3} $ common in the right hand side of the equation and have
\[\Rightarrow \tan \theta +\tan 2\theta =\sqrt{3}\left( 1-\tan \theta \tan 2\theta \right)\]
Let us divide both side of the above equation by \[1-\tan \theta \tan 2\theta \] and have,
\[\Rightarrow \dfrac{\tan \theta +\tan 2\theta }{1-\tan \theta \tan 2\theta }=\sqrt{3}\]
We observe that the expression in tangent of angles in the left hand side is in the form tangent sum of two angles $ \tan \left( A+B \right) $ where $ A=\theta ,B=2\theta $ . We use the formula and proceed to have
\[\begin{align}
& \Rightarrow \tan \left( \theta +2\theta \right)=\sqrt{3} \\
& \Rightarrow \tan \left( 3\theta \right)=\sqrt{3} \\
\end{align}\]
We know that $ \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3} $ . We put $ \tan \left( \dfrac{\pi }{3} \right) $ in place of $ \sqrt{3} $ and have,
\[\Rightarrow \tan \left( 3\theta \right)=\tan \left( \dfrac{\pi }{3} \right)\]
We can obtain the solution of the above equation by taking $ x=3\theta ,\alpha =\dfrac{\pi }{3} $ and for some $ n\in I $ . We have,
\[\Rightarrow 3\theta =n\pi +\dfrac{\pi }{3}\]
We divide both side of the equation by 3 and have
\[\Rightarrow \theta =\dfrac{n\pi }{3}+\dfrac{\pi }{9}\]
We take $ \dfrac{\pi }{9} $ common in the right hand side of the equation and have,
\[\Rightarrow \theta =\dfrac{\pi }{9}\left( 3n+1 \right),n\in I\]
So, the correct answer is “Option C”.
Note: We note that $ 1-\tan 2\theta \tan \theta $ cannot be zero here and that is why we could divide with it. The value of $ \theta $ for which $ 1-\tan 2\theta \tan \theta =0 $ will not satisfy the given equation. Here we can find $ \theta =\left( \dfrac{2n+1}{6} \right)\pi $ .If $ A=B $ we get tangent double angle formula $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ . The tangent difference angle formula is given by $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\cdot \tan B} $
Complete step-by-step answer:
We know from tangent sum of the angles formula that for any two angles with measures $ A $ and $ B $ we have
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\]
We can also find the value of $ \tan {{60}^{\circ }} $ by converting it to the ratio of sine and cosine. We have
\[\tan {{60}^{\circ }}=\dfrac{\sin {{60}^{\circ }}}{\cos {{60}^{\circ }}}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}=\sqrt{3}\]
We convert $ {{60}^{\circ }} $ into radian and have
\[\begin{align}
& {{60}^{\circ }}=\dfrac{{{60}^{\circ }}}{{{180}^{\circ }}}\times \pi =\dfrac{\pi }{3} \\
& \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\tan \left( {{60}^{\circ }} \right)=\sqrt{3} \\
\end{align}\]
We also know that the solutions of the equation $ \tan x=\tan \alpha $ (where $ x $ is the unknown variable and $ \alpha $ is measure of angle) are given by
\[x=n\pi +\alpha \]
Here $ n $ is any integer , so we have $ n\in I $ .
We are given the question a trigonometric equation in tangent of any acute angle $ \theta $ as
\[\tan \theta +\tan 2\theta +\sqrt{3}\tan \theta \tan 2\theta =\sqrt{3}\]
Let us collect the terms having $ \sqrt{3} $ at the right hand side of the equation. We have
\[\Rightarrow \tan \theta +\tan 2\theta =\sqrt{3}-\sqrt{3}\tan \theta \tan 2\theta \]
We take $ \sqrt{3} $ common in the right hand side of the equation and have
\[\Rightarrow \tan \theta +\tan 2\theta =\sqrt{3}\left( 1-\tan \theta \tan 2\theta \right)\]
Let us divide both side of the above equation by \[1-\tan \theta \tan 2\theta \] and have,
\[\Rightarrow \dfrac{\tan \theta +\tan 2\theta }{1-\tan \theta \tan 2\theta }=\sqrt{3}\]
We observe that the expression in tangent of angles in the left hand side is in the form tangent sum of two angles $ \tan \left( A+B \right) $ where $ A=\theta ,B=2\theta $ . We use the formula and proceed to have
\[\begin{align}
& \Rightarrow \tan \left( \theta +2\theta \right)=\sqrt{3} \\
& \Rightarrow \tan \left( 3\theta \right)=\sqrt{3} \\
\end{align}\]
We know that $ \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3} $ . We put $ \tan \left( \dfrac{\pi }{3} \right) $ in place of $ \sqrt{3} $ and have,
\[\Rightarrow \tan \left( 3\theta \right)=\tan \left( \dfrac{\pi }{3} \right)\]
We can obtain the solution of the above equation by taking $ x=3\theta ,\alpha =\dfrac{\pi }{3} $ and for some $ n\in I $ . We have,
\[\Rightarrow 3\theta =n\pi +\dfrac{\pi }{3}\]
We divide both side of the equation by 3 and have
\[\Rightarrow \theta =\dfrac{n\pi }{3}+\dfrac{\pi }{9}\]
We take $ \dfrac{\pi }{9} $ common in the right hand side of the equation and have,
\[\Rightarrow \theta =\dfrac{\pi }{9}\left( 3n+1 \right),n\in I\]
So, the correct answer is “Option C”.
Note: We note that $ 1-\tan 2\theta \tan \theta $ cannot be zero here and that is why we could divide with it. The value of $ \theta $ for which $ 1-\tan 2\theta \tan \theta =0 $ will not satisfy the given equation. Here we can find $ \theta =\left( \dfrac{2n+1}{6} \right)\pi $ .If $ A=B $ we get tangent double angle formula $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ . The tangent difference angle formula is given by $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\cdot \tan B} $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

