
If $\tan \theta +\sin \theta =m\text{ and }\tan \theta -\sin \theta =n$ then prove that ${{m}^{2}}-{{n}^{2}}=4\sqrt{mn}$.
Answer
552.9k+ views
Hint: In this question, we are given the values of m and n in terms of trigonometric function. We need to prove ${{m}^{2}}-{{n}^{2}}=4\sqrt{mn}$. For this, we will solve the left side and the right side separately and then prove them equal. We will use the following properties.
\[\begin{align}
& \left( i \right){{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \left( ii \right){{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( iii \right){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) \\
& \left( iv \right)\tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \left( v \right){{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
\end{align}\]
Complete step by step answer:
Here we are given the values of m and n in the form of trigonometric function as,
$\tan \theta +\sin \theta =m\text{ and }\tan \theta -\sin \theta =n\cdots \cdots \left( 1 \right)$.
We need to prove ${{m}^{2}}-{{n}^{2}}=4\sqrt{mn}$.
For this let us first simplify the left side of the equation, we have the left side as ${{m}^{2}}-{{n}^{2}}$.
Putting in the values from (1) we get, ${{\left( \tan \theta +\sin \theta \right)}^{2}}-{{\left( \tan \theta -\sin \theta \right)}^{2}}$.
Now let us use expansion of algebraic function i.e. ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\text{ and }{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ we get,
${{\tan }^{2}}\theta +{{\sin }^{2}}\theta +2\tan \theta \sin \theta -\left( {{\tan }^{2}}\theta +{{\sin }^{2}}\theta -2\tan \theta \sin \theta \right)$.
Simplifying we get,
${{\tan }^{2}}\theta +{{\sin }^{2}}\theta +2\tan \theta \sin \theta -{{\tan }^{2}}\theta -{{\sin }^{2}}\theta +2\tan \theta \sin \theta $.
Cancelling the terms of ${{\tan }^{2}}\theta \text{ and }{{\sin }^{2}}\theta $ we get, $4\tan \theta \sin \theta $.
Therefore the left side ${{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta $.
Now let us solve the right side of the given equation and prove it to be equal to $4\tan \theta \sin \theta $ so that the left side is equal to the right side.
We have the right side as, $4\sqrt{mn}$.
Putting in the values from (1) we get,
$4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}$.
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ using this we get,
$4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }$.
Now let us use the property $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ we get,
$4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }$.
Taking ${{\sin }^{2}}\theta $ common inside the square root term we get,
$4\sqrt{{{\sin }^{2}}\theta \left( \dfrac{1}{{{\cos }^{2}}\theta }-1 \right)}$.
Taking LCM of ${{\cos }^{2}}\theta $ we get,
$4\sqrt{{{\sin }^{2}}\theta \left( \dfrac{1-{{\cos }^{2}}\theta }{{{\cos }^{2}}\theta } \right)}$.
Now we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ which can be written as ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ so using this in the above equation we get,
$4\sqrt{{{\sin }^{2}}\theta \cdot \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}$.
Now again using $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ we get,
$4\sqrt{{{\sin }^{2}}\theta {{\tan }^{2}}\theta }$.
As we know that squares and square root cancel each other, so we get,
\[4\sin \theta \tan \theta \Rightarrow 4\tan \theta \sin \theta \].
So the right side of the equation is also equal to \[4\tan \theta \sin \theta \].
Therefore, \[{{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta =4\sqrt{mn}\] hence \[{{m}^{2}}-{{n}^{2}}=4\sqrt{mn}\].
Hence proved.
Note: Students should keep in mind all the trigonometric properties before solving this sum. Take care of the signs while applying algebraic properties. There are many ways to solve a sum so students can use different ways also to solve this sum. Take care of the signs while using trigonometric properties.
\[\begin{align}
& \left( i \right){{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \left( ii \right){{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( iii \right){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) \\
& \left( iv \right)\tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \left( v \right){{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
\end{align}\]
Complete step by step answer:
Here we are given the values of m and n in the form of trigonometric function as,
$\tan \theta +\sin \theta =m\text{ and }\tan \theta -\sin \theta =n\cdots \cdots \left( 1 \right)$.
We need to prove ${{m}^{2}}-{{n}^{2}}=4\sqrt{mn}$.
For this let us first simplify the left side of the equation, we have the left side as ${{m}^{2}}-{{n}^{2}}$.
Putting in the values from (1) we get, ${{\left( \tan \theta +\sin \theta \right)}^{2}}-{{\left( \tan \theta -\sin \theta \right)}^{2}}$.
Now let us use expansion of algebraic function i.e. ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\text{ and }{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ we get,
${{\tan }^{2}}\theta +{{\sin }^{2}}\theta +2\tan \theta \sin \theta -\left( {{\tan }^{2}}\theta +{{\sin }^{2}}\theta -2\tan \theta \sin \theta \right)$.
Simplifying we get,
${{\tan }^{2}}\theta +{{\sin }^{2}}\theta +2\tan \theta \sin \theta -{{\tan }^{2}}\theta -{{\sin }^{2}}\theta +2\tan \theta \sin \theta $.
Cancelling the terms of ${{\tan }^{2}}\theta \text{ and }{{\sin }^{2}}\theta $ we get, $4\tan \theta \sin \theta $.
Therefore the left side ${{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta $.
Now let us solve the right side of the given equation and prove it to be equal to $4\tan \theta \sin \theta $ so that the left side is equal to the right side.
We have the right side as, $4\sqrt{mn}$.
Putting in the values from (1) we get,
$4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}$.
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ using this we get,
$4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }$.
Now let us use the property $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ we get,
$4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }$.
Taking ${{\sin }^{2}}\theta $ common inside the square root term we get,
$4\sqrt{{{\sin }^{2}}\theta \left( \dfrac{1}{{{\cos }^{2}}\theta }-1 \right)}$.
Taking LCM of ${{\cos }^{2}}\theta $ we get,
$4\sqrt{{{\sin }^{2}}\theta \left( \dfrac{1-{{\cos }^{2}}\theta }{{{\cos }^{2}}\theta } \right)}$.
Now we know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ which can be written as ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ so using this in the above equation we get,
$4\sqrt{{{\sin }^{2}}\theta \cdot \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}$.
Now again using $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ we get,
$4\sqrt{{{\sin }^{2}}\theta {{\tan }^{2}}\theta }$.
As we know that squares and square root cancel each other, so we get,
\[4\sin \theta \tan \theta \Rightarrow 4\tan \theta \sin \theta \].
So the right side of the equation is also equal to \[4\tan \theta \sin \theta \].
Therefore, \[{{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta =4\sqrt{mn}\] hence \[{{m}^{2}}-{{n}^{2}}=4\sqrt{mn}\].
Hence proved.
Note: Students should keep in mind all the trigonometric properties before solving this sum. Take care of the signs while applying algebraic properties. There are many ways to solve a sum so students can use different ways also to solve this sum. Take care of the signs while using trigonometric properties.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

