
If \[\tan \theta +\sin \theta =m\] and \[\tan \theta -\sin \theta =n\], prove that \[\left( {{m}^{2}}-{{n}^{2}} \right)=\pm 4\sqrt{mn}\].
Answer
510.1k+ views
Hint: First find the value of \[{{m}^{2}}\]and \[{{n}^{2}}\]individually. Then solve \[{{m}^{2}}-{{n}^{2}}\]and find its value. Similarly, find the value of \[\sqrt{mn}\]. Using the expression given in the question, prove that \[\left( {{m}^{2}}-{{n}^{2}} \right)\] and \[4\sqrt{mn}\] have similar expressions.
Complete step-by-step answer:
We have been given that, \[m=\tan \theta +\sin \theta \] and \[m=\tan \theta -\sin \theta \].
Now let us find the value of \[{{m}^{2}}\].
\[{{m}^{2}}={{\left( \tan \theta +\sin \theta \right)}^{2}}\]
We know that, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]. Similarly, find the value of \[{{\left( \tan \theta +\sin \theta \right)}^{2}}\].
\[\Rightarrow {{m}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Similarly, let us find the value of \[{{n}^{2}}\].
\[{{n}^{2}}={{\left( \tan \theta -\sin \theta \right)}^{2}}\]
We know that , \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]. Similarly, let us find the value of \[{{\left( \tan \theta -\sin \theta \right)}^{2}}\].
\[{{n}^{2}}={{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Let us now, find the value of \[{{m}^{2}}-{{n}^{2}}\]. We know the expression for \[{{m}^{2}}\]and \[{{n}^{2}}\].
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=\left( {{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right)-\left( {{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right) \\
& {{m}^{2}}-{{n}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta -{{\tan }^{2}}\theta +2\tan \theta \sin \theta -{{\sin }^{2}}\theta \\
\end{align}\]
Let us cancel out the like terms.
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=2\tan \theta \sin \theta +2\tan \theta \sin \theta \\
& \therefore {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta -(1) \\
\end{align}\]
Now let us find the value of \[4\sqrt{mn}\].
\[4\sqrt{mn}=4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}\]
We know that, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[4\sqrt{mn}=4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }\].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\].
\[\therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }\]
We know, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\begin{align}
& \therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \times {{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}=4\sqrt{{{\sin }^{2}}\theta .\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{{{\sin }^{2}}\theta .{{\tan }^{2}}\theta } \\
& =\pm 4\sin \theta \tan \theta \\
& \therefore 4\sqrt{mn}=\pm 4\tan \theta \sin \theta -(2) \\
\end{align}\]
By comparing the expression (1) and (2) we get that,
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta \\
& 4\sqrt{mn}=4\tan \theta \sin \theta \\
\end{align}\]
\[\therefore \]We proved that, \[{{m}^{2}}-{{n}^{2}}=\pm 4\sqrt{mn}\].
Note: We have used basic trigonometric identities here to remember such identities which will enable us to solve questions like these easily. Don’t substitute the value of m and n directly in the expression given. Calculate LHS and RHS separately.
Complete step-by-step answer:
We have been given that, \[m=\tan \theta +\sin \theta \] and \[m=\tan \theta -\sin \theta \].
Now let us find the value of \[{{m}^{2}}\].
\[{{m}^{2}}={{\left( \tan \theta +\sin \theta \right)}^{2}}\]
We know that, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]. Similarly, find the value of \[{{\left( \tan \theta +\sin \theta \right)}^{2}}\].
\[\Rightarrow {{m}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Similarly, let us find the value of \[{{n}^{2}}\].
\[{{n}^{2}}={{\left( \tan \theta -\sin \theta \right)}^{2}}\]
We know that , \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]. Similarly, let us find the value of \[{{\left( \tan \theta -\sin \theta \right)}^{2}}\].
\[{{n}^{2}}={{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Let us now, find the value of \[{{m}^{2}}-{{n}^{2}}\]. We know the expression for \[{{m}^{2}}\]and \[{{n}^{2}}\].
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=\left( {{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right)-\left( {{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right) \\
& {{m}^{2}}-{{n}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta -{{\tan }^{2}}\theta +2\tan \theta \sin \theta -{{\sin }^{2}}\theta \\
\end{align}\]
Let us cancel out the like terms.
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=2\tan \theta \sin \theta +2\tan \theta \sin \theta \\
& \therefore {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta -(1) \\
\end{align}\]
Now let us find the value of \[4\sqrt{mn}\].
\[4\sqrt{mn}=4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}\]
We know that, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[4\sqrt{mn}=4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }\].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\].
\[\therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }\]
We know, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\begin{align}
& \therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \times {{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}=4\sqrt{{{\sin }^{2}}\theta .\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{{{\sin }^{2}}\theta .{{\tan }^{2}}\theta } \\
& =\pm 4\sin \theta \tan \theta \\
& \therefore 4\sqrt{mn}=\pm 4\tan \theta \sin \theta -(2) \\
\end{align}\]
By comparing the expression (1) and (2) we get that,
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta \\
& 4\sqrt{mn}=4\tan \theta \sin \theta \\
\end{align}\]
\[\therefore \]We proved that, \[{{m}^{2}}-{{n}^{2}}=\pm 4\sqrt{mn}\].
Note: We have used basic trigonometric identities here to remember such identities which will enable us to solve questions like these easily. Don’t substitute the value of m and n directly in the expression given. Calculate LHS and RHS separately.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

