
If \[\tan \theta +\sin \theta =m\] and \[\tan \theta -\sin \theta =n\], prove that \[\left( {{m}^{2}}-{{n}^{2}} \right)=\pm 4\sqrt{mn}\].
Answer
498.1k+ views
Hint: First find the value of \[{{m}^{2}}\]and \[{{n}^{2}}\]individually. Then solve \[{{m}^{2}}-{{n}^{2}}\]and find its value. Similarly, find the value of \[\sqrt{mn}\]. Using the expression given in the question, prove that \[\left( {{m}^{2}}-{{n}^{2}} \right)\] and \[4\sqrt{mn}\] have similar expressions.
Complete step-by-step answer:
We have been given that, \[m=\tan \theta +\sin \theta \] and \[m=\tan \theta -\sin \theta \].
Now let us find the value of \[{{m}^{2}}\].
\[{{m}^{2}}={{\left( \tan \theta +\sin \theta \right)}^{2}}\]
We know that, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]. Similarly, find the value of \[{{\left( \tan \theta +\sin \theta \right)}^{2}}\].
\[\Rightarrow {{m}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Similarly, let us find the value of \[{{n}^{2}}\].
\[{{n}^{2}}={{\left( \tan \theta -\sin \theta \right)}^{2}}\]
We know that , \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]. Similarly, let us find the value of \[{{\left( \tan \theta -\sin \theta \right)}^{2}}\].
\[{{n}^{2}}={{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Let us now, find the value of \[{{m}^{2}}-{{n}^{2}}\]. We know the expression for \[{{m}^{2}}\]and \[{{n}^{2}}\].
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=\left( {{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right)-\left( {{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right) \\
& {{m}^{2}}-{{n}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta -{{\tan }^{2}}\theta +2\tan \theta \sin \theta -{{\sin }^{2}}\theta \\
\end{align}\]
Let us cancel out the like terms.
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=2\tan \theta \sin \theta +2\tan \theta \sin \theta \\
& \therefore {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta -(1) \\
\end{align}\]
Now let us find the value of \[4\sqrt{mn}\].
\[4\sqrt{mn}=4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}\]
We know that, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[4\sqrt{mn}=4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }\].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\].
\[\therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }\]
We know, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\begin{align}
& \therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \times {{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}=4\sqrt{{{\sin }^{2}}\theta .\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{{{\sin }^{2}}\theta .{{\tan }^{2}}\theta } \\
& =\pm 4\sin \theta \tan \theta \\
& \therefore 4\sqrt{mn}=\pm 4\tan \theta \sin \theta -(2) \\
\end{align}\]
By comparing the expression (1) and (2) we get that,
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta \\
& 4\sqrt{mn}=4\tan \theta \sin \theta \\
\end{align}\]
\[\therefore \]We proved that, \[{{m}^{2}}-{{n}^{2}}=\pm 4\sqrt{mn}\].
Note: We have used basic trigonometric identities here to remember such identities which will enable us to solve questions like these easily. Don’t substitute the value of m and n directly in the expression given. Calculate LHS and RHS separately.
Complete step-by-step answer:
We have been given that, \[m=\tan \theta +\sin \theta \] and \[m=\tan \theta -\sin \theta \].
Now let us find the value of \[{{m}^{2}}\].
\[{{m}^{2}}={{\left( \tan \theta +\sin \theta \right)}^{2}}\]
We know that, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]. Similarly, find the value of \[{{\left( \tan \theta +\sin \theta \right)}^{2}}\].
\[\Rightarrow {{m}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Similarly, let us find the value of \[{{n}^{2}}\].
\[{{n}^{2}}={{\left( \tan \theta -\sin \theta \right)}^{2}}\]
We know that , \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]. Similarly, let us find the value of \[{{\left( \tan \theta -\sin \theta \right)}^{2}}\].
\[{{n}^{2}}={{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Let us now, find the value of \[{{m}^{2}}-{{n}^{2}}\]. We know the expression for \[{{m}^{2}}\]and \[{{n}^{2}}\].
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=\left( {{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right)-\left( {{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right) \\
& {{m}^{2}}-{{n}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta -{{\tan }^{2}}\theta +2\tan \theta \sin \theta -{{\sin }^{2}}\theta \\
\end{align}\]
Let us cancel out the like terms.
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=2\tan \theta \sin \theta +2\tan \theta \sin \theta \\
& \therefore {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta -(1) \\
\end{align}\]
Now let us find the value of \[4\sqrt{mn}\].
\[4\sqrt{mn}=4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}\]
We know that, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[4\sqrt{mn}=4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }\].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\].
\[\therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }\]
We know, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\begin{align}
& \therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \times {{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}=4\sqrt{{{\sin }^{2}}\theta .\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{{{\sin }^{2}}\theta .{{\tan }^{2}}\theta } \\
& =\pm 4\sin \theta \tan \theta \\
& \therefore 4\sqrt{mn}=\pm 4\tan \theta \sin \theta -(2) \\
\end{align}\]
By comparing the expression (1) and (2) we get that,
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta \\
& 4\sqrt{mn}=4\tan \theta \sin \theta \\
\end{align}\]
\[\therefore \]We proved that, \[{{m}^{2}}-{{n}^{2}}=\pm 4\sqrt{mn}\].
Note: We have used basic trigonometric identities here to remember such identities which will enable us to solve questions like these easily. Don’t substitute the value of m and n directly in the expression given. Calculate LHS and RHS separately.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

