
If \[\tan \theta +\sin \theta =m\] and \[\tan \theta -\sin \theta =n\], prove that \[\left( {{m}^{2}}-{{n}^{2}} \right)=\pm 4\sqrt{mn}\].
Answer
509.2k+ views
Hint: First find the value of \[{{m}^{2}}\]and \[{{n}^{2}}\]individually. Then solve \[{{m}^{2}}-{{n}^{2}}\]and find its value. Similarly, find the value of \[\sqrt{mn}\]. Using the expression given in the question, prove that \[\left( {{m}^{2}}-{{n}^{2}} \right)\] and \[4\sqrt{mn}\] have similar expressions.
Complete step-by-step answer:
We have been given that, \[m=\tan \theta +\sin \theta \] and \[m=\tan \theta -\sin \theta \].
Now let us find the value of \[{{m}^{2}}\].
\[{{m}^{2}}={{\left( \tan \theta +\sin \theta \right)}^{2}}\]
We know that, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]. Similarly, find the value of \[{{\left( \tan \theta +\sin \theta \right)}^{2}}\].
\[\Rightarrow {{m}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Similarly, let us find the value of \[{{n}^{2}}\].
\[{{n}^{2}}={{\left( \tan \theta -\sin \theta \right)}^{2}}\]
We know that , \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]. Similarly, let us find the value of \[{{\left( \tan \theta -\sin \theta \right)}^{2}}\].
\[{{n}^{2}}={{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Let us now, find the value of \[{{m}^{2}}-{{n}^{2}}\]. We know the expression for \[{{m}^{2}}\]and \[{{n}^{2}}\].
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=\left( {{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right)-\left( {{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right) \\
& {{m}^{2}}-{{n}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta -{{\tan }^{2}}\theta +2\tan \theta \sin \theta -{{\sin }^{2}}\theta \\
\end{align}\]
Let us cancel out the like terms.
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=2\tan \theta \sin \theta +2\tan \theta \sin \theta \\
& \therefore {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta -(1) \\
\end{align}\]
Now let us find the value of \[4\sqrt{mn}\].
\[4\sqrt{mn}=4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}\]
We know that, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[4\sqrt{mn}=4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }\].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\].
\[\therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }\]
We know, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\begin{align}
& \therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \times {{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}=4\sqrt{{{\sin }^{2}}\theta .\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{{{\sin }^{2}}\theta .{{\tan }^{2}}\theta } \\
& =\pm 4\sin \theta \tan \theta \\
& \therefore 4\sqrt{mn}=\pm 4\tan \theta \sin \theta -(2) \\
\end{align}\]
By comparing the expression (1) and (2) we get that,
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta \\
& 4\sqrt{mn}=4\tan \theta \sin \theta \\
\end{align}\]
\[\therefore \]We proved that, \[{{m}^{2}}-{{n}^{2}}=\pm 4\sqrt{mn}\].
Note: We have used basic trigonometric identities here to remember such identities which will enable us to solve questions like these easily. Don’t substitute the value of m and n directly in the expression given. Calculate LHS and RHS separately.
Complete step-by-step answer:
We have been given that, \[m=\tan \theta +\sin \theta \] and \[m=\tan \theta -\sin \theta \].
Now let us find the value of \[{{m}^{2}}\].
\[{{m}^{2}}={{\left( \tan \theta +\sin \theta \right)}^{2}}\]
We know that, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]. Similarly, find the value of \[{{\left( \tan \theta +\sin \theta \right)}^{2}}\].
\[\Rightarrow {{m}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Similarly, let us find the value of \[{{n}^{2}}\].
\[{{n}^{2}}={{\left( \tan \theta -\sin \theta \right)}^{2}}\]
We know that , \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]. Similarly, let us find the value of \[{{\left( \tan \theta -\sin \theta \right)}^{2}}\].
\[{{n}^{2}}={{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \]
Let us now, find the value of \[{{m}^{2}}-{{n}^{2}}\]. We know the expression for \[{{m}^{2}}\]and \[{{n}^{2}}\].
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=\left( {{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right)-\left( {{\tan }^{2}}\theta -2\tan \theta \sin \theta +{{\sin }^{2}}\theta \right) \\
& {{m}^{2}}-{{n}^{2}}={{\tan }^{2}}\theta +2\tan \theta \sin \theta +{{\sin }^{2}}\theta -{{\tan }^{2}}\theta +2\tan \theta \sin \theta -{{\sin }^{2}}\theta \\
\end{align}\]
Let us cancel out the like terms.
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=2\tan \theta \sin \theta +2\tan \theta \sin \theta \\
& \therefore {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta -(1) \\
\end{align}\]
Now let us find the value of \[4\sqrt{mn}\].
\[4\sqrt{mn}=4\sqrt{\left( \tan \theta +\sin \theta \right)\left( \tan \theta -\sin \theta \right)}\]
We know that, \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
Similarly, \[4\sqrt{mn}=4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }\].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\].
\[\therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-{{\sin }^{2}}\theta }\]
We know, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\begin{align}
& \therefore 4\sqrt{mn}=4\sqrt{\dfrac{{{\sin }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)}{{{\cos }^{2}}\theta }} \\
& =4\sqrt{\dfrac{{{\sin }^{2}}\theta \times {{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}=4\sqrt{{{\sin }^{2}}\theta .\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \\
& =4\sqrt{{{\sin }^{2}}\theta .{{\tan }^{2}}\theta } \\
& =\pm 4\sin \theta \tan \theta \\
& \therefore 4\sqrt{mn}=\pm 4\tan \theta \sin \theta -(2) \\
\end{align}\]
By comparing the expression (1) and (2) we get that,
\[\begin{align}
& {{m}^{2}}-{{n}^{2}}=4\tan \theta \sin \theta \\
& 4\sqrt{mn}=4\tan \theta \sin \theta \\
\end{align}\]
\[\therefore \]We proved that, \[{{m}^{2}}-{{n}^{2}}=\pm 4\sqrt{mn}\].
Note: We have used basic trigonometric identities here to remember such identities which will enable us to solve questions like these easily. Don’t substitute the value of m and n directly in the expression given. Calculate LHS and RHS separately.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

