
If $ \tan \theta +\cot \theta =2 $ , find the value of $ {{\tan }^{2}}\theta +{{\cot }^{2}}\theta $
Answer
551.4k+ views
Hint: Recall that $ \tan \theta =\dfrac{1}{\cot \theta } $ .
Square both the sides of the given equation and use the expansion: $ {{(a\pm b)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab $ .
The value of the square of a real number cannot be negative. i.e. $ {{x}^{2}}\ge 0,x\in \mathbb{R} $ .
Complete step-by-step answer:
It is given that $ \tan \theta +\cot \theta =2 $ .
Squaring both sides, we get:
⇒ $ {{(\tan \theta +\cot \theta )}^{2}}={{2}^{2}} $
On expanding by using the distributive property of multiplication, we get:
⇒ $ {{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2\tan \theta \cot \theta =4 $
Since $ \tan \theta =\dfrac{1}{\cot \theta } $ , we have $ \tan \theta \cot \theta =1 $ . Substituting this value in the above equation, we get:
⇒ $ {{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2=4 $
Subtracting 2 from both the sides, we get:
⇒ $ {{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2 $ , which is the required answer.
The answer must be correct, as both $ {{\tan }^{2}}\theta ,{{\cot }^{2}}\theta >0 $ and $ 2>0 $.
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H} $ , $ \cos \theta =\dfrac{B}{H} $ , $ \tan \theta =\dfrac{P}{B} $
$ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \cot \theta =\dfrac{\cos \theta }{\sin \theta } $
$ \csc \theta =\dfrac{1}{\sin \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ , $ \tan \theta =\dfrac{1}{\cot \theta } $
Some useful algebraic identities:
$ (a+b)(a-b)={{a}^{2}}-{{b}^{2}} $
$ {{(a\pm b)}^{2}}={{a}^{2}}\pm 2ab+{{b}^{2}} $
$ {{(a\pm b)}^{3}}={{a}^{3}}\pm 3ab(a\pm b)\pm {{b}^{3}} $
$ (a\pm b)({{a}^{2}}\mp ab+{{b}^{2}})={{a}^{3}}\pm {{b}^{3}} $
Square both the sides of the given equation and use the expansion: $ {{(a\pm b)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab $ .
The value of the square of a real number cannot be negative. i.e. $ {{x}^{2}}\ge 0,x\in \mathbb{R} $ .
Complete step-by-step answer:
It is given that $ \tan \theta +\cot \theta =2 $ .
Squaring both sides, we get:
⇒ $ {{(\tan \theta +\cot \theta )}^{2}}={{2}^{2}} $
On expanding by using the distributive property of multiplication, we get:
⇒ $ {{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2\tan \theta \cot \theta =4 $
Since $ \tan \theta =\dfrac{1}{\cot \theta } $ , we have $ \tan \theta \cot \theta =1 $ . Substituting this value in the above equation, we get:
⇒ $ {{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2=4 $
Subtracting 2 from both the sides, we get:
⇒ $ {{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2 $ , which is the required answer.
The answer must be correct, as both $ {{\tan }^{2}}\theta ,{{\cot }^{2}}\theta >0 $ and $ 2>0 $.
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H} $ , $ \cos \theta =\dfrac{B}{H} $ , $ \tan \theta =\dfrac{P}{B} $
$ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \cot \theta =\dfrac{\cos \theta }{\sin \theta } $
$ \csc \theta =\dfrac{1}{\sin \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ , $ \tan \theta =\dfrac{1}{\cot \theta } $
Some useful algebraic identities:
$ (a+b)(a-b)={{a}^{2}}-{{b}^{2}} $
$ {{(a\pm b)}^{2}}={{a}^{2}}\pm 2ab+{{b}^{2}} $
$ {{(a\pm b)}^{3}}={{a}^{3}}\pm 3ab(a\pm b)\pm {{b}^{3}} $
$ (a\pm b)({{a}^{2}}\mp ab+{{b}^{2}})={{a}^{3}}\pm {{b}^{3}} $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

