
If \[\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 \] then the general solution is_____
A. \[\theta = (6n + 1)\dfrac{\pi }{{18}}\] , \[\forall n \in I\]
B. \[\theta = (6n + 1)\dfrac{\pi }{9}\] , \[\forall n \in I\]
C. \[\theta = (3n + 1)\dfrac{\pi }{9}\] , \[\forall n \in I\]
D. \[\theta = (3n + 1)\dfrac{\pi }{{18}}\] , \[\forall n \in I\]
Answer
556.5k+ views
Hint: The solution generalized by means of periodicity is known as the general solution or the expression involving integer ‘n’ which gives all solutions of a trigonometric equation is called the general solution. If we have \[\tan x = \tan y\] then the general solution is given by \[x = n\pi + y\] . Now we have the equation \[\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 \] , we convert this in the form of \[\tan x = \tan y\] then we can apply the general solution.
Complete step-by-step answer:
Given,
\[\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 \]
Rearranging the terms, we get:
\[ \Rightarrow \tan \theta + \tan 2\theta = \sqrt 3 - \sqrt 3 \tan \theta \tan 2\theta \]
Taking \[\sqrt 3 \] as common on the right hand side,
\[ \Rightarrow \tan \theta + \tan 2\theta = \sqrt 3 (1 - \tan \theta \tan 2\theta )\]
Divide by \[(1 - \tan \theta \tan 2\theta )\] on the both sides, we get:
\[ \Rightarrow \dfrac{{\tan \theta + \tan 2\theta }}{{(1 - \tan \theta \tan 2\theta )}} = \sqrt 3 \]
We know the formula \[\tan (X + Y) = \dfrac{{\tan X + \tan Y}}{{(1 - \tan X.\tan Y)}}\] , comparing with right hand side of above equation we get:
\[\left[ {X = \theta ,Y = 2\theta } \right] \] .
\[ \Rightarrow \tan (\theta + 2\theta ) = \sqrt 3 \]
But we know the standard value \[\sqrt 3 = \tan \dfrac{\pi }{3}\] . Substituting this in above, we get: \[ \Rightarrow \tan (\theta + 2\theta ) = \tan \dfrac{\pi }{3}\]
Adding the angel, we get:
\[ \Rightarrow \tan (3\theta ) = \tan \dfrac{\pi }{3}\]
We know if we have \[\tan x = \tan y\] then the general solution is \[x = n\pi + y\] , comparing this with the above equation, we apply the general solution.
Then above equation becomes,
\[ \Rightarrow 3\theta = n\pi + \dfrac{\pi }{3}\]
Divide by 3 on the both sides, we get:
\[ \Rightarrow \theta = \dfrac{{n\pi }}{3} + \dfrac{\pi }{9}\] , \[\forall n \in I\]
We can stop here, but the obtained answer does not match with any of the given options.
So taking \[\dfrac{\pi }{9}\] as common,
\[ \Rightarrow \theta = \dfrac{\pi }{9}\left( {3n + 1} \right)\] , \[\forall n \in I\]
So, the correct answer is “Option C”.
Note: There is a difference between general solution and principle solution. The solutions lying between zero degree and 360 degree are known as principle solutions. Remember the general solution of six trigonometric functions. As all the general solutions of sine and cosine and tangent are look alike, be careful while applying the general solution.
Complete step-by-step answer:
Given,
\[\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 \]
Rearranging the terms, we get:
\[ \Rightarrow \tan \theta + \tan 2\theta = \sqrt 3 - \sqrt 3 \tan \theta \tan 2\theta \]
Taking \[\sqrt 3 \] as common on the right hand side,
\[ \Rightarrow \tan \theta + \tan 2\theta = \sqrt 3 (1 - \tan \theta \tan 2\theta )\]
Divide by \[(1 - \tan \theta \tan 2\theta )\] on the both sides, we get:
\[ \Rightarrow \dfrac{{\tan \theta + \tan 2\theta }}{{(1 - \tan \theta \tan 2\theta )}} = \sqrt 3 \]
We know the formula \[\tan (X + Y) = \dfrac{{\tan X + \tan Y}}{{(1 - \tan X.\tan Y)}}\] , comparing with right hand side of above equation we get:
\[\left[ {X = \theta ,Y = 2\theta } \right] \] .
\[ \Rightarrow \tan (\theta + 2\theta ) = \sqrt 3 \]
But we know the standard value \[\sqrt 3 = \tan \dfrac{\pi }{3}\] . Substituting this in above, we get: \[ \Rightarrow \tan (\theta + 2\theta ) = \tan \dfrac{\pi }{3}\]
Adding the angel, we get:
\[ \Rightarrow \tan (3\theta ) = \tan \dfrac{\pi }{3}\]
We know if we have \[\tan x = \tan y\] then the general solution is \[x = n\pi + y\] , comparing this with the above equation, we apply the general solution.
Then above equation becomes,
\[ \Rightarrow 3\theta = n\pi + \dfrac{\pi }{3}\]
Divide by 3 on the both sides, we get:
\[ \Rightarrow \theta = \dfrac{{n\pi }}{3} + \dfrac{\pi }{9}\] , \[\forall n \in I\]
We can stop here, but the obtained answer does not match with any of the given options.
So taking \[\dfrac{\pi }{9}\] as common,
\[ \Rightarrow \theta = \dfrac{\pi }{9}\left( {3n + 1} \right)\] , \[\forall n \in I\]
So, the correct answer is “Option C”.
Note: There is a difference between general solution and principle solution. The solutions lying between zero degree and 360 degree are known as principle solutions. Remember the general solution of six trigonometric functions. As all the general solutions of sine and cosine and tangent are look alike, be careful while applying the general solution.
Recently Updated Pages
The kinetic energy in KeV of the alpha particle when class 12 physics CBSE

How do seedless plants reproduce class 12 biology CBSE

What is a genotype and phenotype ratio class 12 biology CBSE

What is plant breeding Describe various steps involved class 12 biology CBSE

Why does the matchstick burn on rubbing it on the side class 12 chemistry CBSE

The near point of a hypermetropic eye is 1m Assume class 12 physics CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

