
If $\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1$ , then find $\dfrac{{dy}}{{dx}}$ .
Answer
585k+ views
Hint: It is asked to find $\dfrac{{dy}}{{dx}}$ of the equation $\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1$ .
So, differentiate the whole equation with respect to x.
Now, on applying chain rule for differentiation in L.H.S. of the equation, we will get $\dfrac{{dy}}{{dx}}$ .
Complete step-by-step answer:
The given equation is $\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1$ .
Now, we are asked to find $\dfrac{{dy}}{{dx}}$ .
For that, we will differentiate the given equation with respect to x.
Now, differentiating with respect to x,
$
\therefore \dfrac{d}{{dx}}\left( {\tan \left( {x + y} \right) + \tan \left( {x - y} \right)} \right) = \dfrac{d}{{dx}}\left( 1 \right) \\
\therefore \dfrac{d}{{dx}}\tan \left( {x + y} \right) + \dfrac{d}{{dx}}\tan \left( {x - y} \right) = 0 \\
$
Here, we will have to use chain rules for differentiating.
$
\Rightarrow {\sec ^2}\left( {x + y} \right)\left[ {1 + \dfrac{{dy}}{{dx}}} \right] + {\sec ^2}\left( {x - y} \right)\left[ {1 - \dfrac{{dy}}{{dx}}} \right] = 0 \\
\Rightarrow {\sec ^2}\left( {x + y} \right) + {\sec ^2}\left( {x + y} \right)\dfrac{{dy}}{{dx}} + {\sec ^2}\left( {x - y} \right) - {\sec ^2}\left( {x - y} \right)\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow {\sec ^2}\left( {x + y} \right)\dfrac{{dy}}{{dx}} - {\sec ^2}\left( {x - y} \right)\dfrac{{dy}}{{dx}} = - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right] \\
\Rightarrow \left[ {{{\sec }^2}\left( {x + y} \right) - {{\sec }^2}\left( {x - y} \right)} \right]\dfrac{{dy}}{{dx}} = - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x + y} \right) - {{\sec }^2}\left( {x - y} \right)} \right]}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x - y} \right) - {{\sec }^2}\left( {x + y} \right)} \right]}} \\
$
Thus, we get $\dfrac{{dy}}{{dx}} = \dfrac{{\left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x - y} \right) - {{\sec }^2}\left( {x + y} \right)} \right]}}$ .
Note: Chain rule for differentiation:
To find the derivative of a composite function, we use chain rule. The chain rule tells us how to differentiate composite functions.
Let us consider a composite function \[f\left( {g\left( x \right)} \right)\] . Here, g is the function within the function f, so, we will call f as outer function and g as inner function.
Now, to find its derivative, first we differentiate the outer function i.e. function f and then add the derivative of the inner function i.e. function g to it to get the derivative of the composite function.
$
\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) + \dfrac{d}{{dx}}g\left( x \right) \\
= f'\left( {g\left( x \right)} \right) + g'\left( x \right) \\
$
So, differentiate the whole equation with respect to x.
Now, on applying chain rule for differentiation in L.H.S. of the equation, we will get $\dfrac{{dy}}{{dx}}$ .
Complete step-by-step answer:
The given equation is $\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1$ .
Now, we are asked to find $\dfrac{{dy}}{{dx}}$ .
For that, we will differentiate the given equation with respect to x.
Now, differentiating with respect to x,
$
\therefore \dfrac{d}{{dx}}\left( {\tan \left( {x + y} \right) + \tan \left( {x - y} \right)} \right) = \dfrac{d}{{dx}}\left( 1 \right) \\
\therefore \dfrac{d}{{dx}}\tan \left( {x + y} \right) + \dfrac{d}{{dx}}\tan \left( {x - y} \right) = 0 \\
$
Here, we will have to use chain rules for differentiating.
$
\Rightarrow {\sec ^2}\left( {x + y} \right)\left[ {1 + \dfrac{{dy}}{{dx}}} \right] + {\sec ^2}\left( {x - y} \right)\left[ {1 - \dfrac{{dy}}{{dx}}} \right] = 0 \\
\Rightarrow {\sec ^2}\left( {x + y} \right) + {\sec ^2}\left( {x + y} \right)\dfrac{{dy}}{{dx}} + {\sec ^2}\left( {x - y} \right) - {\sec ^2}\left( {x - y} \right)\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow {\sec ^2}\left( {x + y} \right)\dfrac{{dy}}{{dx}} - {\sec ^2}\left( {x - y} \right)\dfrac{{dy}}{{dx}} = - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right] \\
\Rightarrow \left[ {{{\sec }^2}\left( {x + y} \right) - {{\sec }^2}\left( {x - y} \right)} \right]\dfrac{{dy}}{{dx}} = - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x + y} \right) - {{\sec }^2}\left( {x - y} \right)} \right]}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x - y} \right) - {{\sec }^2}\left( {x + y} \right)} \right]}} \\
$
Thus, we get $\dfrac{{dy}}{{dx}} = \dfrac{{\left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x - y} \right) - {{\sec }^2}\left( {x + y} \right)} \right]}}$ .
Note: Chain rule for differentiation:
To find the derivative of a composite function, we use chain rule. The chain rule tells us how to differentiate composite functions.
Let us consider a composite function \[f\left( {g\left( x \right)} \right)\] . Here, g is the function within the function f, so, we will call f as outer function and g as inner function.
Now, to find its derivative, first we differentiate the outer function i.e. function f and then add the derivative of the inner function i.e. function g to it to get the derivative of the composite function.
$
\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) + \dfrac{d}{{dx}}g\left( x \right) \\
= f'\left( {g\left( x \right)} \right) + g'\left( x \right) \\
$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

