
If $\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right)$, then
$\sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }}$
$\sin 2x = \dfrac{4}{\pi }$
$\sin 2x = \dfrac{1}{{2n + 1}}$
$\sin 2x = n\pi $
Answer
576.9k+ views
Hint: In this problem, we need to find the value of $\sin 2x$ where we are provided with a trigonometric expression which is $\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right)$. For this, first we will use the identity $\cot \left( \alpha \right) = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)$. Then, we will use the result $\tan x = \tan \alpha \Rightarrow x = n\pi + \alpha $. Then, we will use some basic trigonometric identities.
Complete step-by-step solution:
In this problem, it is given that $\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right) \cdots \cdots \left( 1 \right)$.
Now we will use the identity $\cot \left( \alpha \right) = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)$ on RHS of equation $\left( 1 \right)$.
Therefore, we get $\tan \left( {\cot x} \right) = \tan \left( {\dfrac{\pi }{2} - \tan x} \right) \cdots \cdots \left( 2 \right)$.
Now we are going to use the result $\tan x = \tan \alpha \Rightarrow x = n\pi + \alpha $ in equation $\left( 2 \right)$.
Therefore, we get $\cot x = n\pi + \dfrac{\pi }{2} - \tan x \cdots \cdots \left( 3 \right)$.
Let us simplify the equation $\left( 3 \right)$. Therefore, we get $\cot x + \tan x = n\pi + \dfrac{\pi }{2} \cdots \cdots \left( 4 \right)$.
Now we need to find the value of $\sin 2x$.
Therefore, we will convert the equation $\left( 4 \right)$ in terms of sine and cosines.
For this, we will use some basic trigonometric identities. That is, we will use identities $\tan x = \dfrac{{\sin x}}{{\cos x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ on LHS of equation $\left( 4 \right)$.
Therefore, we get $\dfrac{{\cos x}}{{\sin x}} + \dfrac{{\sin x}}{{\cos x}} = \dfrac{{2n\pi + \pi }}{2} \cdots \cdots \left( 5 \right)$
Let us simplify the LHS and RHS of the equation $\left( 5 \right)$.
Therefore, we get $\dfrac{{\left( {\cos x} \right)\left( {\cos x} \right) + \left( {\sin x} \right)\left( {\sin x} \right)}}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2}$
$ \Rightarrow \dfrac{{{{\cos }^2}x + {{\sin }^2}x}}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2} \cdots \cdots \left( 6 \right)$
Now we are going to use the Pythagorean identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$ on the LHS of equation $\left( 6 \right)$.
Therefore, we get $\dfrac{1}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2}$
$ \Rightarrow \left( {\sin x} \right)\left( {\cos x} \right) = \dfrac{2}{{\left( {2n + 1} \right)\pi }} \cdots \cdots \left( 7 \right)$
Let us multiply by the number $2$ on both sides of equation $\left( 7 \right)$.
Therefore, we get
$\Rightarrow2\left( {\sin x} \right)\left( {\cos x} \right) = \dfrac{4}{{\left( {2n + 1} \right)\pi }} \cdots \cdots \left( 8 \right)$
Now we are going to use the formula $2\sin \theta \cos \theta = \sin 2\theta $ on the LHS of equation $\Rightarrow \left( 8 \right)$. Therefore, we get $\sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }}$
Hence the correct answer is option A .
Note:There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Complete step-by-step solution:
In this problem, it is given that $\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right) \cdots \cdots \left( 1 \right)$.
Now we will use the identity $\cot \left( \alpha \right) = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)$ on RHS of equation $\left( 1 \right)$.
Therefore, we get $\tan \left( {\cot x} \right) = \tan \left( {\dfrac{\pi }{2} - \tan x} \right) \cdots \cdots \left( 2 \right)$.
Now we are going to use the result $\tan x = \tan \alpha \Rightarrow x = n\pi + \alpha $ in equation $\left( 2 \right)$.
Therefore, we get $\cot x = n\pi + \dfrac{\pi }{2} - \tan x \cdots \cdots \left( 3 \right)$.
Let us simplify the equation $\left( 3 \right)$. Therefore, we get $\cot x + \tan x = n\pi + \dfrac{\pi }{2} \cdots \cdots \left( 4 \right)$.
Now we need to find the value of $\sin 2x$.
Therefore, we will convert the equation $\left( 4 \right)$ in terms of sine and cosines.
For this, we will use some basic trigonometric identities. That is, we will use identities $\tan x = \dfrac{{\sin x}}{{\cos x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ on LHS of equation $\left( 4 \right)$.
Therefore, we get $\dfrac{{\cos x}}{{\sin x}} + \dfrac{{\sin x}}{{\cos x}} = \dfrac{{2n\pi + \pi }}{2} \cdots \cdots \left( 5 \right)$
Let us simplify the LHS and RHS of the equation $\left( 5 \right)$.
Therefore, we get $\dfrac{{\left( {\cos x} \right)\left( {\cos x} \right) + \left( {\sin x} \right)\left( {\sin x} \right)}}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2}$
$ \Rightarrow \dfrac{{{{\cos }^2}x + {{\sin }^2}x}}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2} \cdots \cdots \left( 6 \right)$
Now we are going to use the Pythagorean identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$ on the LHS of equation $\left( 6 \right)$.
Therefore, we get $\dfrac{1}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2}$
$ \Rightarrow \left( {\sin x} \right)\left( {\cos x} \right) = \dfrac{2}{{\left( {2n + 1} \right)\pi }} \cdots \cdots \left( 7 \right)$
Let us multiply by the number $2$ on both sides of equation $\left( 7 \right)$.
Therefore, we get
$\Rightarrow2\left( {\sin x} \right)\left( {\cos x} \right) = \dfrac{4}{{\left( {2n + 1} \right)\pi }} \cdots \cdots \left( 8 \right)$
Now we are going to use the formula $2\sin \theta \cos \theta = \sin 2\theta $ on the LHS of equation $\Rightarrow \left( 8 \right)$. Therefore, we get $\sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }}$
Hence the correct answer is option A .
Note:There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

