
If $ \tan \alpha =\dfrac{p}{q} $ , where $ \alpha =6\beta $ , $ \alpha $ being an acute angle, prove that : $ \dfrac{1}{2}\left\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\}=\sqrt{{{p}^{2}}+{{q}^{2}}} $ .
Answer
572.7k+ views
Hint: To prove the above equation, first you need to convert $ \operatorname{cosec}2\beta $ and $ \sec 2\beta $ into $ \sin 2\beta $ and $ \cos 2\beta $ , using the identity $ \sin \theta =\dfrac{1}{\operatorname{cosec}\theta } $ and $ \cos \theta =\dfrac{1}{\sec \theta } $ . Then, use the identity $ \sin 2\theta =2\sin \theta \cos \theta $ and multiply numerator and denominator with $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ and use triangle law of trigonometry and write $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ .Now, use formula $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ and put $ \alpha =6\beta $ .
Complete step-by-step answer:
Since, we known that $ \sin \theta =\dfrac{1}{\operatorname{cosec}\theta } $ and $ \cos \theta =\dfrac{1}{\sec \theta } $ , then we can write LHS of the above equation $ \dfrac{1}{2}\left\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\}=\sqrt{{{p}^{2}}+{{q}^{2}}} $ as:
$ =\dfrac{1}{2}\left\{ \dfrac{p}{\sin 2\beta }-\dfrac{q}{\cos 2\beta } \right\} $
Take LCM of $ \sin 2\beta $ and $ \cos 2\beta $ , then we will get:
$ =\dfrac{1}{2}\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 2\beta \cos 2\beta } \right\} $
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{2\sin 2\beta \cos 2\beta } $
We know that $ \sin 2\theta =2\sin \theta \cos \theta $ , hence we will get
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 4\beta } $
Now, we will multiply numerator and denominator with $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\} $
Now, split $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ over both the numerator term:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}}-\dfrac{q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\}............\left( 1 \right) $
Now, we will use triangle law of trigonometry (i.e. $ \sin \theta =\dfrac{perpendicular}{hypotenuse} $ , $ \cos \theta =\dfrac{base}{hypotenuse} $ and \[\tan \theta =\dfrac{perpendicular}{base}\])
It is given in question that $ \tan \alpha =\dfrac{p}{q} $ , hence perpendicular of the triangle is ‘p’ and its base is ‘q’, then, the hypotenuse will become $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , so we can draw the below diagram:
From the figure, it can be seen that we can write $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ .
Hence, the above equation (1) will become:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \sin \alpha \cos 2\beta -\cos \alpha \sin 2\beta \right\} $
Now, by using the formula $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ , we can rewrite the above equation as:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( \alpha -2\beta \right) $
Now, we will put $ \alpha =6\beta $ in the above equation, then we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 6\beta -2\beta \right) $
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 4\beta \right) $
$ =\sqrt{{{p}^{2}}+{{q}^{2}}} $ = RHS
Hence, LHS = RHS
This is our required proof.
Note: Students are required to check that weather $ \alpha $ is an acute angle or not, otherwise there is chance of change of sign while writing $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ , if $ \alpha $ become greater than $ 90{}^\circ $ .
Complete step-by-step answer:
Since, we known that $ \sin \theta =\dfrac{1}{\operatorname{cosec}\theta } $ and $ \cos \theta =\dfrac{1}{\sec \theta } $ , then we can write LHS of the above equation $ \dfrac{1}{2}\left\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\}=\sqrt{{{p}^{2}}+{{q}^{2}}} $ as:
$ =\dfrac{1}{2}\left\{ \dfrac{p}{\sin 2\beta }-\dfrac{q}{\cos 2\beta } \right\} $
Take LCM of $ \sin 2\beta $ and $ \cos 2\beta $ , then we will get:
$ =\dfrac{1}{2}\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 2\beta \cos 2\beta } \right\} $
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{2\sin 2\beta \cos 2\beta } $
We know that $ \sin 2\theta =2\sin \theta \cos \theta $ , hence we will get
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 4\beta } $
Now, we will multiply numerator and denominator with $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\} $
Now, split $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ over both the numerator term:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}}-\dfrac{q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\}............\left( 1 \right) $
Now, we will use triangle law of trigonometry (i.e. $ \sin \theta =\dfrac{perpendicular}{hypotenuse} $ , $ \cos \theta =\dfrac{base}{hypotenuse} $ and \[\tan \theta =\dfrac{perpendicular}{base}\])
It is given in question that $ \tan \alpha =\dfrac{p}{q} $ , hence perpendicular of the triangle is ‘p’ and its base is ‘q’, then, the hypotenuse will become $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , so we can draw the below diagram:
From the figure, it can be seen that we can write $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ .
Hence, the above equation (1) will become:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \sin \alpha \cos 2\beta -\cos \alpha \sin 2\beta \right\} $
Now, by using the formula $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ , we can rewrite the above equation as:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( \alpha -2\beta \right) $
Now, we will put $ \alpha =6\beta $ in the above equation, then we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 6\beta -2\beta \right) $
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 4\beta \right) $
$ =\sqrt{{{p}^{2}}+{{q}^{2}}} $ = RHS
Hence, LHS = RHS
This is our required proof.
Note: Students are required to check that weather $ \alpha $ is an acute angle or not, otherwise there is chance of change of sign while writing $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ , if $ \alpha $ become greater than $ 90{}^\circ $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

