
If $ \tan \alpha =\dfrac{p}{q} $ , where $ \alpha =6\beta $ , $ \alpha $ being an acute angle, prove that : $ \dfrac{1}{2}\left\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\}=\sqrt{{{p}^{2}}+{{q}^{2}}} $ .
Answer
572.7k+ views
Hint: To prove the above equation, first you need to convert $ \operatorname{cosec}2\beta $ and $ \sec 2\beta $ into $ \sin 2\beta $ and $ \cos 2\beta $ , using the identity $ \sin \theta =\dfrac{1}{\operatorname{cosec}\theta } $ and $ \cos \theta =\dfrac{1}{\sec \theta } $ . Then, use the identity $ \sin 2\theta =2\sin \theta \cos \theta $ and multiply numerator and denominator with $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ and use triangle law of trigonometry and write $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ .Now, use formula $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ and put $ \alpha =6\beta $ .
Complete step-by-step answer:
Since, we known that $ \sin \theta =\dfrac{1}{\operatorname{cosec}\theta } $ and $ \cos \theta =\dfrac{1}{\sec \theta } $ , then we can write LHS of the above equation $ \dfrac{1}{2}\left\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\}=\sqrt{{{p}^{2}}+{{q}^{2}}} $ as:
$ =\dfrac{1}{2}\left\{ \dfrac{p}{\sin 2\beta }-\dfrac{q}{\cos 2\beta } \right\} $
Take LCM of $ \sin 2\beta $ and $ \cos 2\beta $ , then we will get:
$ =\dfrac{1}{2}\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 2\beta \cos 2\beta } \right\} $
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{2\sin 2\beta \cos 2\beta } $
We know that $ \sin 2\theta =2\sin \theta \cos \theta $ , hence we will get
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 4\beta } $
Now, we will multiply numerator and denominator with $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\} $
Now, split $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ over both the numerator term:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}}-\dfrac{q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\}............\left( 1 \right) $
Now, we will use triangle law of trigonometry (i.e. $ \sin \theta =\dfrac{perpendicular}{hypotenuse} $ , $ \cos \theta =\dfrac{base}{hypotenuse} $ and \[\tan \theta =\dfrac{perpendicular}{base}\])
It is given in question that $ \tan \alpha =\dfrac{p}{q} $ , hence perpendicular of the triangle is ‘p’ and its base is ‘q’, then, the hypotenuse will become $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , so we can draw the below diagram:
From the figure, it can be seen that we can write $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ .
Hence, the above equation (1) will become:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \sin \alpha \cos 2\beta -\cos \alpha \sin 2\beta \right\} $
Now, by using the formula $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ , we can rewrite the above equation as:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( \alpha -2\beta \right) $
Now, we will put $ \alpha =6\beta $ in the above equation, then we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 6\beta -2\beta \right) $
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 4\beta \right) $
$ =\sqrt{{{p}^{2}}+{{q}^{2}}} $ = RHS
Hence, LHS = RHS
This is our required proof.
Note: Students are required to check that weather $ \alpha $ is an acute angle or not, otherwise there is chance of change of sign while writing $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ , if $ \alpha $ become greater than $ 90{}^\circ $ .
Complete step-by-step answer:
Since, we known that $ \sin \theta =\dfrac{1}{\operatorname{cosec}\theta } $ and $ \cos \theta =\dfrac{1}{\sec \theta } $ , then we can write LHS of the above equation $ \dfrac{1}{2}\left\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\}=\sqrt{{{p}^{2}}+{{q}^{2}}} $ as:
$ =\dfrac{1}{2}\left\{ \dfrac{p}{\sin 2\beta }-\dfrac{q}{\cos 2\beta } \right\} $
Take LCM of $ \sin 2\beta $ and $ \cos 2\beta $ , then we will get:
$ =\dfrac{1}{2}\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 2\beta \cos 2\beta } \right\} $
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{2\sin 2\beta \cos 2\beta } $
We know that $ \sin 2\theta =2\sin \theta \cos \theta $ , hence we will get
$ =\dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 4\beta } $
Now, we will multiply numerator and denominator with $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\} $
Now, split $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ over both the numerator term:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \dfrac{p\cos 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}}-\dfrac{q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\}............\left( 1 \right) $
Now, we will use triangle law of trigonometry (i.e. $ \sin \theta =\dfrac{perpendicular}{hypotenuse} $ , $ \cos \theta =\dfrac{base}{hypotenuse} $ and \[\tan \theta =\dfrac{perpendicular}{base}\])
It is given in question that $ \tan \alpha =\dfrac{p}{q} $ , hence perpendicular of the triangle is ‘p’ and its base is ‘q’, then, the hypotenuse will become $ \sqrt{{{p}^{2}}+{{q}^{2}}} $ , so we can draw the below diagram:
From the figure, it can be seen that we can write $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ .
Hence, the above equation (1) will become:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\{ \sin \alpha \cos 2\beta -\cos \alpha \sin 2\beta \right\} $
Now, by using the formula $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ , we can rewrite the above equation as:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( \alpha -2\beta \right) $
Now, we will put $ \alpha =6\beta $ in the above equation, then we will get:
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 6\beta -2\beta \right) $
$ =\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 4\beta \right) $
$ =\sqrt{{{p}^{2}}+{{q}^{2}}} $ = RHS
Hence, LHS = RHS
This is our required proof.
Note: Students are required to check that weather $ \alpha $ is an acute angle or not, otherwise there is chance of change of sign while writing $ \sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ and $ \cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} $ , if $ \alpha $ become greater than $ 90{}^\circ $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

