
If tan A and tan B are the roots of the quadratic equation $ ab{x^2} - {c^2}x + ab = 0 $ , where a, b, c are the sides of the triangle ABC, then prove $ {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 2 $
Answer
576k+ views
Hint: We can use the sum and product of roots, identity for sum of tan of angles and calculate the various angles of triangle ABC. We can then find the sine for these angles and add their squares to prove the given equation.
Formulas to be used:
$
S = \dfrac{{Coeff.{\text{ }}of{\text{ }}x}}{{const.}} \\
P = \dfrac{{Coeff.{\text{ }}of{\text{ }}{x^2}}}{{const.}} \\
$ where, S and P are sum and products of the roots of a quadratic equation
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \times \tan B}} $
$ \sin \theta = \dfrac{{perpendicular}}{{hypotenuse}} $
According to Pythagoras theorem:
$ {H^2} = {P^2} + {B^2} $ where, H is hypotenuse, P is perpendicular and B is the base for the right angled triangle.
Complete step-by-step answer:
It is given that tan A and tan B are the roots of the quadratic equation $ ab{x^2} - {c^2}x + ab = 0 $ .
The sum of and product of the roots of a quadratic equation are given as:
$
S = \dfrac{{Coeff.{\text{ }}of{\text{ }}x}}{{const.}} \\
P = \dfrac{{Coeff.{\text{ }}of{\text{ }}{x^2}}}{{const.}} \;
$
For the given quadratic equation:
$
\tan A + \tan B = \dfrac{{{c^2}}}{{ab}} \\
\tan A \times \tan B = \dfrac{{ab}}{{ab}} = 1 \\
$
From the identity of sum of angles of tan:
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \times \tan B}} $
Substituting the values, we get:
$
\tan (A + B) = \dfrac{{\dfrac{{{c^2}}}{{ab}}}}{{1 - 1}} \\
\tan (A + B) = \dfrac{{\dfrac{{{c^2}}}{{ab}}}}{0} \\
\Rightarrow \tan (A + B) = \infty \\
\Rightarrow \tan (A + B) = \tan \dfrac{\pi }{2}\left( {\because \tan \dfrac{\pi }{2} = \infty } \right) \;
$
We can now get the value of the angles of the triangle ABC.
$ A + B = \dfrac{\pi }{2} $
Sum of all the three angles in a triangle is 180°.
$
A + B + C = {180^\circ } \\
\Rightarrow \dfrac{\pi }{2} + C = {180^\circ } \\
\Rightarrow C = {180^\circ } - {90^\circ }\left( {\because \dfrac{\pi }{2} = {{90}^\circ }} \right) \\
\Rightarrow C = {90^\circ } \;
$
So the triangle can be drawn as:
We can calculate the sine of respective angles using the formula for sine.
$ \sin \theta = \dfrac{{perpendicular}}{{hypotenuse}} $
$
\Rightarrow \sin A = \dfrac{{BC}}{{AB}} \\
\Rightarrow \sin B = \dfrac{{AC}}{{AB}} \\
\Rightarrow \sin C = 1\left( {\because \sin 90 = 1} \right) \;
$
Now, according to the question we have to prove that $ {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 2 $ , so:
$
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{{B{C^2}}}{{A{B^2}}} + \dfrac{{A{C^2}}}{{A{B^2}}} + 1 \\
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{{B{C^2} + A{C^2}}}{{A{B^2}}} + 1 \;
$
From Pythagoras theorem:
$ {H^2} = {P^2} + {B^2} $ , here,
Hypotenuse (H) = AB
Perpendicular = AC
Base (B) = BC
$ \Rightarrow A{B^2} = A{C^2} + B{C^2} $
Substituting this, we get:
$
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{{A{B^2}}}{{A{B^2}}} + 1 \\
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 1 + 1 \\
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 2 \;
$
Hence, the given statement is proved.
Note: We can apply Pythagoras theorems only on right-angled triangles where one of the angles is of 90°.In a quadratic equation, the maximum degree of a variable is 2, that is how we identify the given equation as quadratic.We can write the angle of 90° or $ \dfrac{\pi }{2} $ according to the needs, both representing the same measure of angle.
The perpendicular side for an angle is the side opposite to it.
Formulas to be used:
$
S = \dfrac{{Coeff.{\text{ }}of{\text{ }}x}}{{const.}} \\
P = \dfrac{{Coeff.{\text{ }}of{\text{ }}{x^2}}}{{const.}} \\
$ where, S and P are sum and products of the roots of a quadratic equation
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \times \tan B}} $
$ \sin \theta = \dfrac{{perpendicular}}{{hypotenuse}} $
According to Pythagoras theorem:
$ {H^2} = {P^2} + {B^2} $ where, H is hypotenuse, P is perpendicular and B is the base for the right angled triangle.
Complete step-by-step answer:
It is given that tan A and tan B are the roots of the quadratic equation $ ab{x^2} - {c^2}x + ab = 0 $ .
The sum of and product of the roots of a quadratic equation are given as:
$
S = \dfrac{{Coeff.{\text{ }}of{\text{ }}x}}{{const.}} \\
P = \dfrac{{Coeff.{\text{ }}of{\text{ }}{x^2}}}{{const.}} \;
$
For the given quadratic equation:
$
\tan A + \tan B = \dfrac{{{c^2}}}{{ab}} \\
\tan A \times \tan B = \dfrac{{ab}}{{ab}} = 1 \\
$
From the identity of sum of angles of tan:
$ \tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \times \tan B}} $
Substituting the values, we get:
$
\tan (A + B) = \dfrac{{\dfrac{{{c^2}}}{{ab}}}}{{1 - 1}} \\
\tan (A + B) = \dfrac{{\dfrac{{{c^2}}}{{ab}}}}{0} \\
\Rightarrow \tan (A + B) = \infty \\
\Rightarrow \tan (A + B) = \tan \dfrac{\pi }{2}\left( {\because \tan \dfrac{\pi }{2} = \infty } \right) \;
$
We can now get the value of the angles of the triangle ABC.
$ A + B = \dfrac{\pi }{2} $
Sum of all the three angles in a triangle is 180°.
$
A + B + C = {180^\circ } \\
\Rightarrow \dfrac{\pi }{2} + C = {180^\circ } \\
\Rightarrow C = {180^\circ } - {90^\circ }\left( {\because \dfrac{\pi }{2} = {{90}^\circ }} \right) \\
\Rightarrow C = {90^\circ } \;
$
So the triangle can be drawn as:
We can calculate the sine of respective angles using the formula for sine.
$ \sin \theta = \dfrac{{perpendicular}}{{hypotenuse}} $
$
\Rightarrow \sin A = \dfrac{{BC}}{{AB}} \\
\Rightarrow \sin B = \dfrac{{AC}}{{AB}} \\
\Rightarrow \sin C = 1\left( {\because \sin 90 = 1} \right) \;
$
Now, according to the question we have to prove that $ {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 2 $ , so:
$
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{{B{C^2}}}{{A{B^2}}} + \dfrac{{A{C^2}}}{{A{B^2}}} + 1 \\
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{{B{C^2} + A{C^2}}}{{A{B^2}}} + 1 \;
$
From Pythagoras theorem:
$ {H^2} = {P^2} + {B^2} $ , here,
Hypotenuse (H) = AB
Perpendicular = AC
Base (B) = BC
$ \Rightarrow A{B^2} = A{C^2} + B{C^2} $
Substituting this, we get:
$
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{{A{B^2}}}{{A{B^2}}} + 1 \\
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 1 + 1 \\
{\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 2 \;
$
Hence, the given statement is proved.
Note: We can apply Pythagoras theorems only on right-angled triangles where one of the angles is of 90°.In a quadratic equation, the maximum degree of a variable is 2, that is how we identify the given equation as quadratic.We can write the angle of 90° or $ \dfrac{\pi }{2} $ according to the needs, both representing the same measure of angle.
The perpendicular side for an angle is the side opposite to it.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

