
If ${{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x$ then prove that the value of L.H.S and R.H.S is equal to 1 and $\tan x=\pm \tan y$ ?
Answer
529.8k+ views
Hint: Let us assume the given equation is equal to k then take one by one L.H.S and R.H.S and equate them equal to k and simplify the equations. Then two equations will be formed which will look like: ${{\tan }^{2}}x+2\tan x\tan 2y=k;{{\tan }^{2}}y+2\tan y\tan 2x=k$. To simplify these two equations, we are going to use the tangent trigonometry identity which is equal to $\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$.
Complete step by step solution:
In the above problem, we have given the following equation:
${{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x$
Let us equate the above equation to k and we get,
$\Rightarrow {{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x=k$
Now, solving the above equations we get,
$\begin{align}
& {{\tan }^{2}}x+2\tan x\tan 2y=k; \\
& {{\tan }^{2}}y+2\tan y\tan 2x=k \\
\end{align}$
First of all, we are solving the first equation from the above two equations and we get,
$\Rightarrow {{\tan }^{2}}x+2\tan x\tan 2y=k$
Subtracting ${{\tan }^{2}}x$ on both the sides we get,
\[\Rightarrow 2\tan x\tan 2y=k-{{\tan }^{2}}x\]
Dividing $2\tan x$ on both the sides of the above equation and we get,
\[\Rightarrow \tan 2y=\dfrac{k-{{\tan }^{2}}x}{2\tan x}\]
We know that there is a trigonometry identity which states that:
$\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$
Applying the above property in the L.H.S of the above equation and we get,
\[\Rightarrow \dfrac{2\tan y}{1-{{\tan }^{2}}y}=\dfrac{k-{{\tan }^{2}}x}{2\tan x}\]
Cross multiplying the above equation we get,
$\Rightarrow 4\tan x\tan y=\left( k-{{\tan }^{2}}x \right)\left( 1-{{\tan }^{2}}y \right)$ …………. (1)
Similarly, we are going to equate k with R.H.S of the main equation and we get,
$\Rightarrow {{\tan }^{2}}y+2\tan y\tan 2x=k$
Subtracting ${{\tan }^{2}}y$ on both the sides we get,
\[\Rightarrow 2\tan y\tan 2x=k-{{\tan }^{2}}y\]
Dividing $2\tan y$ on both the sides of the above equation and we get,
\[\Rightarrow \tan 2x=\dfrac{k-{{\tan }^{2}}y}{2\tan y}\]
We know that there is a trigonometry identity which states that:
$\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$
Applying the above property in the L.H.S of the above equation and we get,
\[\Rightarrow \dfrac{2\tan x}{1-{{\tan }^{2}}x}=\dfrac{k-{{\tan }^{2}}y}{2\tan y}\]
Cross multiplying the above equation we get,
$\Rightarrow 4\tan x\tan y=\left( k-{{\tan }^{2}}y \right)\left( 1-{{\tan }^{2}}x \right)$ …………. (2)
From eq. (1) and eq. (2) we get,
$\Rightarrow \left( k-{{\tan }^{2}}x \right)\left( 1-{{\tan }^{2}}y \right)=\left( k-{{\tan }^{2}}y \right)\left( 1-{{\tan }^{2}}x \right)$
Solving the L.H.S and R.H.S of the above equation and we get,
$\Rightarrow k+{{\tan }^{2}}x{{\tan }^{2}}y-k{{\tan }^{2}}y-{{\tan }^{2}}x=k+{{\tan }^{2}}x{{\tan }^{2}}y-k{{\tan }^{2}}x-{{\tan }^{2}}y$
In the above equation, $k\And {{\tan }^{2}}x{{\tan }^{2}}y$ will be cancelled out from both the sides and we get,
$\Rightarrow -k{{\tan }^{2}}y-{{\tan }^{2}}x=-k{{\tan }^{2}}x-{{\tan }^{2}}y$
Rearranging the above equation and we get,
$\begin{align}
& \Rightarrow k{{\tan }^{2}}x-k{{\tan }^{2}}y+{{\tan }^{2}}y-{{\tan }^{2}}x=0 \\
& \Rightarrow k\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)-\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)=0 \\
\end{align}$
Taking $\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)$ as common from the L.H.S of the above equation and we get,
$\Rightarrow \left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)\left( k-1 \right)=0$
Equating each bracket to 0 we get,
$\begin{align}
& \Rightarrow k=1; \\
& \Rightarrow {{\tan }^{2}}x-{{\tan }^{2}}y=0 \\
& \Rightarrow \left( \tan x-\tan y \right)\left( \tan x+\tan y \right)=0 \\
& \Rightarrow \tan x=\pm \tan y \\
\end{align}$
Note: To solve the above problem you must need to know the property of double angle of tangent which is equal to:
$\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$
If you forget this property then you cannot move forward in this problem.
Complete step by step solution:
In the above problem, we have given the following equation:
${{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x$
Let us equate the above equation to k and we get,
$\Rightarrow {{\tan }^{2}}x+2\tan x\tan 2y={{\tan }^{2}}y+2\tan y\tan 2x=k$
Now, solving the above equations we get,
$\begin{align}
& {{\tan }^{2}}x+2\tan x\tan 2y=k; \\
& {{\tan }^{2}}y+2\tan y\tan 2x=k \\
\end{align}$
First of all, we are solving the first equation from the above two equations and we get,
$\Rightarrow {{\tan }^{2}}x+2\tan x\tan 2y=k$
Subtracting ${{\tan }^{2}}x$ on both the sides we get,
\[\Rightarrow 2\tan x\tan 2y=k-{{\tan }^{2}}x\]
Dividing $2\tan x$ on both the sides of the above equation and we get,
\[\Rightarrow \tan 2y=\dfrac{k-{{\tan }^{2}}x}{2\tan x}\]
We know that there is a trigonometry identity which states that:
$\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$
Applying the above property in the L.H.S of the above equation and we get,
\[\Rightarrow \dfrac{2\tan y}{1-{{\tan }^{2}}y}=\dfrac{k-{{\tan }^{2}}x}{2\tan x}\]
Cross multiplying the above equation we get,
$\Rightarrow 4\tan x\tan y=\left( k-{{\tan }^{2}}x \right)\left( 1-{{\tan }^{2}}y \right)$ …………. (1)
Similarly, we are going to equate k with R.H.S of the main equation and we get,
$\Rightarrow {{\tan }^{2}}y+2\tan y\tan 2x=k$
Subtracting ${{\tan }^{2}}y$ on both the sides we get,
\[\Rightarrow 2\tan y\tan 2x=k-{{\tan }^{2}}y\]
Dividing $2\tan y$ on both the sides of the above equation and we get,
\[\Rightarrow \tan 2x=\dfrac{k-{{\tan }^{2}}y}{2\tan y}\]
We know that there is a trigonometry identity which states that:
$\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$
Applying the above property in the L.H.S of the above equation and we get,
\[\Rightarrow \dfrac{2\tan x}{1-{{\tan }^{2}}x}=\dfrac{k-{{\tan }^{2}}y}{2\tan y}\]
Cross multiplying the above equation we get,
$\Rightarrow 4\tan x\tan y=\left( k-{{\tan }^{2}}y \right)\left( 1-{{\tan }^{2}}x \right)$ …………. (2)
From eq. (1) and eq. (2) we get,
$\Rightarrow \left( k-{{\tan }^{2}}x \right)\left( 1-{{\tan }^{2}}y \right)=\left( k-{{\tan }^{2}}y \right)\left( 1-{{\tan }^{2}}x \right)$
Solving the L.H.S and R.H.S of the above equation and we get,
$\Rightarrow k+{{\tan }^{2}}x{{\tan }^{2}}y-k{{\tan }^{2}}y-{{\tan }^{2}}x=k+{{\tan }^{2}}x{{\tan }^{2}}y-k{{\tan }^{2}}x-{{\tan }^{2}}y$
In the above equation, $k\And {{\tan }^{2}}x{{\tan }^{2}}y$ will be cancelled out from both the sides and we get,
$\Rightarrow -k{{\tan }^{2}}y-{{\tan }^{2}}x=-k{{\tan }^{2}}x-{{\tan }^{2}}y$
Rearranging the above equation and we get,
$\begin{align}
& \Rightarrow k{{\tan }^{2}}x-k{{\tan }^{2}}y+{{\tan }^{2}}y-{{\tan }^{2}}x=0 \\
& \Rightarrow k\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)-\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)=0 \\
\end{align}$
Taking $\left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)$ as common from the L.H.S of the above equation and we get,
$\Rightarrow \left( {{\tan }^{2}}x-{{\tan }^{2}}y \right)\left( k-1 \right)=0$
Equating each bracket to 0 we get,
$\begin{align}
& \Rightarrow k=1; \\
& \Rightarrow {{\tan }^{2}}x-{{\tan }^{2}}y=0 \\
& \Rightarrow \left( \tan x-\tan y \right)\left( \tan x+\tan y \right)=0 \\
& \Rightarrow \tan x=\pm \tan y \\
\end{align}$
Note: To solve the above problem you must need to know the property of double angle of tangent which is equal to:
$\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }$
If you forget this property then you cannot move forward in this problem.
Recently Updated Pages
Define Phase of SHM class 12 physics CBSE

The most suitable material for making the core of an class 12 physics CBSE

Given NaCl is an ionic compound How is an ionic bond class 12 chemistry CBSE

The cross of AaBb X AaBb produces offspring with phenotype class 12 biology CBSE

A thin uniform cylindrical shell closed at both ends class 12 physics CBSE

In a YDSE the central bright fringe can be identified class 12 physics CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

