
If $\tan {{25}^{\circ }}=x$, prove that $\dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x}$.
Answer
515.7k+ views
Hint: To prove the given equation, we are going to write the L.H.S in the expression in x and then prove that both the sides are equal. This conversion is going to be achieved by writing $\tan {{155}^{\circ }}=\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)$ and writing $\tan {{115}^{\circ }}=\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)$ in the L.H.S of the given equation. There are trigonometric conversions which states that: $\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta $ and $\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta $. These conversions we are going to use the L.H.S and hence, will prove the given equation.
Complete step by step answer:
The equation given in the above problem which we are asked to prove is as follows:
$\dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x}$
We have also given that: $\tan {{25}^{\circ }}=x$ so using this relation we are going to make the L.H.S equal to R.H.S.
We can write $\tan {{155}^{\circ }}=\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)$ and $\tan {{115}^{\circ }}=\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)$ in the L.H.S of the given equation and we get,
$\begin{align}
& \dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \dfrac{\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)-\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)}{1+\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)}=\dfrac{1-{{x}^{2}}}{2x} \\
\end{align}$
We know the trigonometric conversions which states that:
$\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta $ and $\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta $
Substituting $\theta ={{25}^{\circ }}$ in the above equations we get,
$\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)=-\tan {{25}^{\circ }}$ and $\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)=-\cot {{25}^{\circ }}$
Using the above equations in the given equation we get,
$\dfrac{-\tan \left( {{25}^{\circ }} \right)+\cot \left( {{25}^{\circ }} \right)}{1+\tan \left( {{25}^{\circ }} \right)\cot \left( {{25}^{\circ }} \right)}=\dfrac{1-{{x}^{2}}}{2x}$
Now, we know that $\cot \theta =\dfrac{1}{\tan \theta }$ using this relation in the above equation we get,
$\dfrac{-\tan \left( {{25}^{\circ }} \right)+\dfrac{1}{\tan {{25}^{\circ }}}}{1+\tan \left( {{25}^{\circ }} \right)\left( \dfrac{1}{\tan {{25}^{\circ }}} \right)}=\dfrac{1-{{x}^{2}}}{2x}$
In the denominator of the L.H.S of the above equation, $\tan {{25}^{\circ }}$ will get cancelled out from the numerator and the denominator and we get,
$\dfrac{-\tan \left( {{25}^{\circ }} \right)+\dfrac{1}{\tan {{25}^{\circ }}}}{1+1}=\dfrac{1-{{x}^{2}}}{2x}$
Substituting $\tan {{25}^{\circ }}=x$ in the L.H.S of the above equation we get,
$\dfrac{-x+\dfrac{1}{x}}{2}=\dfrac{1-{{x}^{2}}}{2x}$
Now, taking $x$ as L.C.M in the L.H.S of the above equation we get,
$\begin{align}
& \dfrac{-x\left( x \right)+1}{2x}=\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \dfrac{-{{x}^{2}}+1}{2x}=\dfrac{1-{{x}^{2}}}{2x} \\
\end{align}$
Rearranging L.H.S of the above equation we get,
$\dfrac{1-{{x}^{2}}}{2x}=\dfrac{1-{{x}^{2}}}{2x}$
As you can see that L.H.S is equal to R.H.S so we have verified the given equation.
Note: The mistake that could be possible in the above problem is that while writing the trigonometric conversions, you might forget to write the negative sign after the conversions.
$\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta $ and $\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta $
There is a negative sign you can see in the above conversions so there is a trick and on using that you will not forget the negative sign and the trick is as you can see that the angles written inside $\tan $ lies in the second quadrant and in the second quadrant $\tan $ is negative.
Complete step by step answer:
The equation given in the above problem which we are asked to prove is as follows:
$\dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x}$
We have also given that: $\tan {{25}^{\circ }}=x$ so using this relation we are going to make the L.H.S equal to R.H.S.
We can write $\tan {{155}^{\circ }}=\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)$ and $\tan {{115}^{\circ }}=\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)$ in the L.H.S of the given equation and we get,
$\begin{align}
& \dfrac{\tan {{155}^{\circ }}-\tan {{115}^{\circ }}}{1+\tan {{155}^{\circ }}\tan {{115}^{\circ }}}=\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \dfrac{\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)-\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)}{1+\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)}=\dfrac{1-{{x}^{2}}}{2x} \\
\end{align}$
We know the trigonometric conversions which states that:
$\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta $ and $\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta $
Substituting $\theta ={{25}^{\circ }}$ in the above equations we get,
$\tan \left( {{180}^{\circ }}-{{25}^{\circ }} \right)=-\tan {{25}^{\circ }}$ and $\tan \left( {{90}^{\circ }}+{{25}^{\circ }} \right)=-\cot {{25}^{\circ }}$
Using the above equations in the given equation we get,
$\dfrac{-\tan \left( {{25}^{\circ }} \right)+\cot \left( {{25}^{\circ }} \right)}{1+\tan \left( {{25}^{\circ }} \right)\cot \left( {{25}^{\circ }} \right)}=\dfrac{1-{{x}^{2}}}{2x}$
Now, we know that $\cot \theta =\dfrac{1}{\tan \theta }$ using this relation in the above equation we get,
$\dfrac{-\tan \left( {{25}^{\circ }} \right)+\dfrac{1}{\tan {{25}^{\circ }}}}{1+\tan \left( {{25}^{\circ }} \right)\left( \dfrac{1}{\tan {{25}^{\circ }}} \right)}=\dfrac{1-{{x}^{2}}}{2x}$
In the denominator of the L.H.S of the above equation, $\tan {{25}^{\circ }}$ will get cancelled out from the numerator and the denominator and we get,
$\dfrac{-\tan \left( {{25}^{\circ }} \right)+\dfrac{1}{\tan {{25}^{\circ }}}}{1+1}=\dfrac{1-{{x}^{2}}}{2x}$
Substituting $\tan {{25}^{\circ }}=x$ in the L.H.S of the above equation we get,
$\dfrac{-x+\dfrac{1}{x}}{2}=\dfrac{1-{{x}^{2}}}{2x}$
Now, taking $x$ as L.C.M in the L.H.S of the above equation we get,
$\begin{align}
& \dfrac{-x\left( x \right)+1}{2x}=\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \dfrac{-{{x}^{2}}+1}{2x}=\dfrac{1-{{x}^{2}}}{2x} \\
\end{align}$
Rearranging L.H.S of the above equation we get,
$\dfrac{1-{{x}^{2}}}{2x}=\dfrac{1-{{x}^{2}}}{2x}$
As you can see that L.H.S is equal to R.H.S so we have verified the given equation.
Note: The mistake that could be possible in the above problem is that while writing the trigonometric conversions, you might forget to write the negative sign after the conversions.
$\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta $ and $\tan \left( {{90}^{\circ }}+\theta \right)=-\cot \theta $
There is a negative sign you can see in the above conversions so there is a trick and on using that you will not forget the negative sign and the trick is as you can see that the angles written inside $\tan $ lies in the second quadrant and in the second quadrant $\tan $ is negative.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

