
If ${{\tan }^{-1}}\dfrac{x-1}{x-2}+{{\tan }^{-1}}\dfrac{x+1}{x+2}=\dfrac{\pi }{4}$ then find the value of $x.$
Answer
556.5k+ views
Hint: As we have the given expression there is ${{\tan }^{-1}}$ and we have to determine the value of $x.$ We know that the ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left[ \dfrac{x+y}{1-xy} \right]$, Now we have to apply this in the given the expression for that we have to replace the $\dfrac{x-1}{x-2}$ by $x$ and $\dfrac{x+1}{x+2}$ by $y.$ Then you have to solve right hand side with the help of cross multiplication solved in numerator and denominator then we have to get the bracket terms solved. But at some point we have to use the identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ After that we can easily find the value of $x.$
Complete step-by-step solution:
The given expression is,
${{\tan }^{-1}}\dfrac{x-1}{x-2}+{{\tan }^{-1}}\dfrac{x+1}{x+2}=\dfrac{\pi }{4}$
Now we know that, the formula of
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left[ \dfrac{x+y}{1-xy} \right]$
After that we have to replace the $x$ by $\dfrac{x+1}{x+2}$ in given from the expression.
Substitute given values in the formula get,
${{\tan }^{-1}}\left( \dfrac{x-1}{x+2} \right)+{{\tan }^{-1}}\left( \dfrac{x+1}{x+2} \right)$
$={{\tan }^{-1}}\left[ \dfrac{\dfrac{x-1}{x+2}+\dfrac{x+1}{x+2}}{1-\dfrac{x-1}{x+2}\times \dfrac{x+1}{x+2}} \right]$
$\therefore {{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]+{{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]={{\tan }^{-1}}\left[ \dfrac{\dfrac{\left( x+1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x+2 \right)}{\left( x-1 \right)\left( x+2 \right)}}{\dfrac{\left( x-2 \right)\left( x+2 \right)-\left( x-1 \right)\left( x+1 \right)}{\left( x-2 \right)\left( x+2 \right)}} \right]$ [By cross multiplication]
$={{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x-2 \right)}{\left( x-2 \right)\left( x+2 \right)}\times \dfrac{\left( x-2 \right)\left( x+2 \right)}{\left( x+2 \right)\left( x-2 \right)-\left( x-1 \right)\left( x+1 \right)} \right]$
Simplifies it.
$={{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x-2 \right)}{\left( x+2 \right)\left( x-2 \right)-\left( x-1 \right)\left( x+1 \right)} \right]$
As we know that the identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
By using the identity we get,
$={{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x-2 \right)}{{{x}^{2}}-{{2}^{2}}-\left[ {{x}^{2}}-{{1}^{2}} \right]} \right]$
Solve it,
$={{\tan }^{-1}}\left[ \dfrac{x\left( x+2 \right)-1\left( x+2 \right)+x\left( x+2 \right)+1\left( x-2 \right)}{{{x}^{2}}-4-{{x}^{2}}+1} \right]$
$={{\tan }^{-1}}\left[ \dfrac{{{x}^{2}}+2x-2+{{x}^{2}}-2x+x-2}{{{x}^{2}}-4-{{x}^{2}}+1} \right]$
Cancel out the similar terms we get,
$={{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]$
Therefore, given expression is written as,
${{\tan }^{-1}}\left[ \dfrac{x-1}{x-2} \right]+{{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]={{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]...(i)$
Here given,
${{\tan }^{-1}}\left[ \dfrac{x-1}{x-2} \right]+{{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]=\dfrac{\pi }{4}$
Substitute value of equation $(i)$
$\therefore {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]=\dfrac{\pi }{4}$
Transfer the ${{\tan }^{-1}}$ to the right side.
$\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]=\tan \dfrac{\pi }{4}$
$\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]=1$ Because $\left[ \because \tan \dfrac{\pi }{4}=1 \right]$
Solve it,
$\therefore 2{{x}^{2}}-4=-3$
$\therefore 2{{x}^{2}}=-3+4$
$\therefore 2{{x}^{2}}=1$
${{x}^{2}}=\dfrac{1}{2}$
$x=\pm \dfrac{1}{\sqrt{2}}$
The value of $x$ is $\pm \dfrac{1}{\sqrt{2}}$
Note: We have to use the sum and difference identities for sine, cosine and tangent while solving any trigonometric problems you need to convert all sec, cot csc and to sin and cos. This helps us to solve it easily by using identities. This checks all sum and differences.
Complete step-by-step solution:
The given expression is,
${{\tan }^{-1}}\dfrac{x-1}{x-2}+{{\tan }^{-1}}\dfrac{x+1}{x+2}=\dfrac{\pi }{4}$
Now we know that, the formula of
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left[ \dfrac{x+y}{1-xy} \right]$
After that we have to replace the $x$ by $\dfrac{x+1}{x+2}$ in given from the expression.
Substitute given values in the formula get,
${{\tan }^{-1}}\left( \dfrac{x-1}{x+2} \right)+{{\tan }^{-1}}\left( \dfrac{x+1}{x+2} \right)$
$={{\tan }^{-1}}\left[ \dfrac{\dfrac{x-1}{x+2}+\dfrac{x+1}{x+2}}{1-\dfrac{x-1}{x+2}\times \dfrac{x+1}{x+2}} \right]$
$\therefore {{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]+{{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]={{\tan }^{-1}}\left[ \dfrac{\dfrac{\left( x+1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x+2 \right)}{\left( x-1 \right)\left( x+2 \right)}}{\dfrac{\left( x-2 \right)\left( x+2 \right)-\left( x-1 \right)\left( x+1 \right)}{\left( x-2 \right)\left( x+2 \right)}} \right]$ [By cross multiplication]
$={{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x-2 \right)}{\left( x-2 \right)\left( x+2 \right)}\times \dfrac{\left( x-2 \right)\left( x+2 \right)}{\left( x+2 \right)\left( x-2 \right)-\left( x-1 \right)\left( x+1 \right)} \right]$
Simplifies it.
$={{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x-2 \right)}{\left( x+2 \right)\left( x-2 \right)-\left( x-1 \right)\left( x+1 \right)} \right]$
As we know that the identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
By using the identity we get,
$={{\tan }^{-1}}\left[ \dfrac{\left( x-1 \right)\left( x+2 \right)+\left( x+1 \right)\left( x-2 \right)}{{{x}^{2}}-{{2}^{2}}-\left[ {{x}^{2}}-{{1}^{2}} \right]} \right]$
Solve it,
$={{\tan }^{-1}}\left[ \dfrac{x\left( x+2 \right)-1\left( x+2 \right)+x\left( x+2 \right)+1\left( x-2 \right)}{{{x}^{2}}-4-{{x}^{2}}+1} \right]$
$={{\tan }^{-1}}\left[ \dfrac{{{x}^{2}}+2x-2+{{x}^{2}}-2x+x-2}{{{x}^{2}}-4-{{x}^{2}}+1} \right]$
Cancel out the similar terms we get,
$={{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]$
Therefore, given expression is written as,
${{\tan }^{-1}}\left[ \dfrac{x-1}{x-2} \right]+{{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]={{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]...(i)$
Here given,
${{\tan }^{-1}}\left[ \dfrac{x-1}{x-2} \right]+{{\tan }^{-1}}\left[ \dfrac{x+1}{x+2} \right]=\dfrac{\pi }{4}$
Substitute value of equation $(i)$
$\therefore {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]=\dfrac{\pi }{4}$
Transfer the ${{\tan }^{-1}}$ to the right side.
$\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]=\tan \dfrac{\pi }{4}$
$\left[ \dfrac{2{{x}^{2}}-4}{-3} \right]=1$ Because $\left[ \because \tan \dfrac{\pi }{4}=1 \right]$
Solve it,
$\therefore 2{{x}^{2}}-4=-3$
$\therefore 2{{x}^{2}}=-3+4$
$\therefore 2{{x}^{2}}=1$
${{x}^{2}}=\dfrac{1}{2}$
$x=\pm \dfrac{1}{\sqrt{2}}$
The value of $x$ is $\pm \dfrac{1}{\sqrt{2}}$
Note: We have to use the sum and difference identities for sine, cosine and tangent while solving any trigonometric problems you need to convert all sec, cot csc and to sin and cos. This helps us to solve it easily by using identities. This checks all sum and differences.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

