
If $t={{45}^{\circ }}$ then what is the value of $\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right)$?
(a) -2
(b) -1
(c) 0
(d) $\dfrac{\pi }{2}$
(e) None of the above
Answer
515.4k+ views
Hint: Assume the given expression as E and use the conversions $\sec x=\dfrac{1}{\cos x}$ and $\csc x=\dfrac{1}{\sin x}$ to simplify the expression. Now, convert the expression into the trigonometric expression containing the tangent and the co – tangent function by using the conversions $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{\cos x}{\sin x}=\cot x$. Finally, substitute the value of angle $t={{45}^{\circ }}$ and use the values $\tan {{45}^{\circ }}=1$ and $\cot {{45}^{\circ }}=1$ to get the answer.
Complete step-by-step solution:
Here we have been provided with the expression $\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right)$ and we have to find its value for the provided angle $t={{45}^{\circ }}$. Let us assume the given expression as E, so we have,
$\Rightarrow E=\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right)$
Using the conversions $\sec x=\dfrac{1}{\cos x}$ and $\csc x=\dfrac{1}{\sin x}$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{1}{\cos \left( t \right)}\times \sin \left( t \right)-\dfrac{1}{\sin \left( t \right)}\times \cos \left( t \right) \\
& \Rightarrow E=\dfrac{\sin \left( t \right)}{\cos \left( t \right)}-\dfrac{\cos \left( t \right)}{\sin \left( t \right)} \\
\end{align}$
We know that $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{\cos x}{\sin x}=\cot x$, so we can write the above expression as: -
$\Rightarrow E=\tan \left( t \right)-\cot \left( t \right)$
Substituting the value of the given angle $t={{45}^{\circ }}$ and using the values $\tan {{45}^{\circ }}=1$ and $\cot {{45}^{\circ }}=1$ we get,
\[\begin{align}
& \Rightarrow E=\tan \left( {{45}^{\circ }} \right)-\cot \left( {{45}^{\circ }} \right) \\
& \Rightarrow E=1-1 \\
& \therefore E=0 \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Note that you can also simplify the expression in a different way. You can take the L.C.M and write the expression as $\dfrac{{{\sin }^{2}}\left( t \right)-{{\cos }^{2}}\left( t \right)}{\sin \left( t \right)\cos \left( t \right)}$ and then use the identity ${{\cos }^{2}}\left( t \right)-{{\sin }^{2}}\left( t \right)=\cos \left( 2t \right)$ to simplify the numerator. Then we will put the value of $t={{45}^{\circ }}$ and use the value $\cos {{90}^{\circ }}=0$ to get the answer. You must remember the values of all the trigonometric function for some particular angles like ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}$ and ${{90}^{\circ }}$. In higher trigonometry we also have to learn the trigonometric values of angles ${{18}^{\circ }},{{36}^{\circ }},{{54}^{\circ }}$ and ${{72}^{\circ }}$. Also remember an important identity $2\sin \left( t \right)\cos \left( t \right)=\sin \left( 2t \right)$ in case you want to simplify the denominator and use the value $\sin {{90}^{\circ }}=1$.
Complete step-by-step solution:
Here we have been provided with the expression $\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right)$ and we have to find its value for the provided angle $t={{45}^{\circ }}$. Let us assume the given expression as E, so we have,
$\Rightarrow E=\sec \left( t \right)\sin \left( t \right)-\csc \left( t \right)\cos \left( t \right)$
Using the conversions $\sec x=\dfrac{1}{\cos x}$ and $\csc x=\dfrac{1}{\sin x}$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{1}{\cos \left( t \right)}\times \sin \left( t \right)-\dfrac{1}{\sin \left( t \right)}\times \cos \left( t \right) \\
& \Rightarrow E=\dfrac{\sin \left( t \right)}{\cos \left( t \right)}-\dfrac{\cos \left( t \right)}{\sin \left( t \right)} \\
\end{align}$
We know that $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{\cos x}{\sin x}=\cot x$, so we can write the above expression as: -
$\Rightarrow E=\tan \left( t \right)-\cot \left( t \right)$
Substituting the value of the given angle $t={{45}^{\circ }}$ and using the values $\tan {{45}^{\circ }}=1$ and $\cot {{45}^{\circ }}=1$ we get,
\[\begin{align}
& \Rightarrow E=\tan \left( {{45}^{\circ }} \right)-\cot \left( {{45}^{\circ }} \right) \\
& \Rightarrow E=1-1 \\
& \therefore E=0 \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Note that you can also simplify the expression in a different way. You can take the L.C.M and write the expression as $\dfrac{{{\sin }^{2}}\left( t \right)-{{\cos }^{2}}\left( t \right)}{\sin \left( t \right)\cos \left( t \right)}$ and then use the identity ${{\cos }^{2}}\left( t \right)-{{\sin }^{2}}\left( t \right)=\cos \left( 2t \right)$ to simplify the numerator. Then we will put the value of $t={{45}^{\circ }}$ and use the value $\cos {{90}^{\circ }}=0$ to get the answer. You must remember the values of all the trigonometric function for some particular angles like ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}$ and ${{90}^{\circ }}$. In higher trigonometry we also have to learn the trigonometric values of angles ${{18}^{\circ }},{{36}^{\circ }},{{54}^{\circ }}$ and ${{72}^{\circ }}$. Also remember an important identity $2\sin \left( t \right)\cos \left( t \right)=\sin \left( 2t \right)$ in case you want to simplify the denominator and use the value $\sin {{90}^{\circ }}=1$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

