
If $\sum\limits_{r=1}^{n}{I\left( r \right)}={{3}^{n}}-1$, then $\sum\limits_{r=1}^{n}{\dfrac{1}{I\left( r \right)}}$ is equal to
Answer
515.1k+ views
Hint: We first try to find the individual terms of the sequence $I\left( 1 \right),I\left( 2 \right),I\left( 3 \right),..........,I\left( n \right)$. We can form the terms in the expression of sums. We get the general form and find the sequence of its reciprocal forms for $\sum\limits_{r=1}^{n}{\dfrac{1}{I\left( r \right)}}$. Then we find the sum of the new sequence.
Complete step by step solution:
First, we try to find the terms of the expression of the sum $\sum\limits_{r=1}^{n}{I\left( r \right)}={{3}^{n}}-1$.
The terms are $I\left( 1 \right),I\left( 2 \right),I\left( 3 \right),..........,I\left( n \right)$.
Changing the value of $n$ in $\sum\limits_{r=1}^{n}{I\left( r \right)}$, we can find the sum of the required number of terms. If we assume ${{S}_{n}}=\sum\limits_{r=1}^{n}{I\left( r \right)}$, we can form the terms in the expression of sums.
Therefore, ${{S}_{1}}=I\left( 1 \right),{{S}_{2}}=\sum\limits_{r=1}^{2}{I\left( r \right)}=I\left( 1 \right)+I\left( 2 \right),{{S}_{3}}=\sum\limits_{r=1}^{3}{I\left( r \right)}=I\left( 1 \right)+I\left( 2 \right)+I\left( 3 \right),......$
We can write ${{S}_{1}}=I\left( 1 \right),I\left( 2 \right)={{S}_{2}}-{{S}_{1}},I\left( 3 \right)={{S}_{3}}-{{S}_{2}},......$
The general form being $I\left( n \right)={{S}_{n}}-{{S}_{n-1}},n\ge 2$.
Now we find the terms where we have
\[\begin{align}
& I\left( 1 \right)={{S}_{1}}={{3}^{1}}-1=2 \\
& I\left( 2 \right)={{S}_{2}}-{{S}_{1}}=\left( {{3}^{2}}-1 \right)-\left( {{3}^{1}}-1 \right)=6 \\
& I\left( 3 \right)={{S}_{3}}-{{S}_{2}}=\left( {{3}^{3}}-1 \right)-\left( {{3}^{2}}-1 \right)=18 \\
& I\left( 4 \right)={{S}_{4}}-{{S}_{3}}=\left( {{3}^{4}}-1 \right)-\left( {{3}^{3}}-1 \right)=54 \\
\end{align}\]
We can see the terms 2, 6, 18, 54 form a G.P. series. The common ratio is $k=\dfrac{6}{2}=\dfrac{18}{6}=3$.
The general term will be $I\left( r \right)=I\left( 1 \right){{k}^{r-1}}$ which is equal to $I\left( r \right)=2\times {{3}^{r-1}}$.
Therefore, $\dfrac{1}{I\left( r \right)}=\dfrac{1}{2\times {{3}^{r-1}}}$. The first term will be $\dfrac{1}{I\left( 1 \right)}=\dfrac{1}{2}$.
The sequence of $\dfrac{1}{I\left( r \right)}=\dfrac{1}{2\times {{3}^{r-1}}}$ is also a G.P. with its common ratio being $m=\dfrac{1}{3}$.
We need to find the sum of n terms as $\sum\limits_{r=1}^{n}{\dfrac{1}{I\left( r \right)}}$.
The value of $\left| m \right|=\dfrac{1}{3}<1$ for which the sum of the first n terms of an G.P. is ${{s}_{n}}=\dfrac{1}{I\left( 1 \right)}\times \dfrac{1-{{r}^{n}}}{1-r}$.
The summation notation for the series \[\dfrac{1}{2},\dfrac{1}{6},\dfrac{1}{18},...,\dfrac{1}{2\times {{3}^{r-1}}}\] will be ${{s}_{n}}=\dfrac{1}{2}\times \dfrac{1-{{\left( \dfrac{1}{2} \right)}^{n}}}{1-\left( \dfrac{1}{2} \right)}=1-\dfrac{1}{{{2}^{n}}}$.
Therefore, $\sum\limits_{r=1}^{n}{\dfrac{1}{I\left( r \right)}}$ is equal to $1-\dfrac{1}{{{2}^{n}}}$.
Note: The second sequence is a decreasing sequence where the common ratio is a positive number. The common difference will never be calculated according to the difference of greater number from the lesser number. The ratio formula should always be according $r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}}$ in its general form.
Complete step by step solution:
First, we try to find the terms of the expression of the sum $\sum\limits_{r=1}^{n}{I\left( r \right)}={{3}^{n}}-1$.
The terms are $I\left( 1 \right),I\left( 2 \right),I\left( 3 \right),..........,I\left( n \right)$.
Changing the value of $n$ in $\sum\limits_{r=1}^{n}{I\left( r \right)}$, we can find the sum of the required number of terms. If we assume ${{S}_{n}}=\sum\limits_{r=1}^{n}{I\left( r \right)}$, we can form the terms in the expression of sums.
Therefore, ${{S}_{1}}=I\left( 1 \right),{{S}_{2}}=\sum\limits_{r=1}^{2}{I\left( r \right)}=I\left( 1 \right)+I\left( 2 \right),{{S}_{3}}=\sum\limits_{r=1}^{3}{I\left( r \right)}=I\left( 1 \right)+I\left( 2 \right)+I\left( 3 \right),......$
We can write ${{S}_{1}}=I\left( 1 \right),I\left( 2 \right)={{S}_{2}}-{{S}_{1}},I\left( 3 \right)={{S}_{3}}-{{S}_{2}},......$
The general form being $I\left( n \right)={{S}_{n}}-{{S}_{n-1}},n\ge 2$.
Now we find the terms where we have
\[\begin{align}
& I\left( 1 \right)={{S}_{1}}={{3}^{1}}-1=2 \\
& I\left( 2 \right)={{S}_{2}}-{{S}_{1}}=\left( {{3}^{2}}-1 \right)-\left( {{3}^{1}}-1 \right)=6 \\
& I\left( 3 \right)={{S}_{3}}-{{S}_{2}}=\left( {{3}^{3}}-1 \right)-\left( {{3}^{2}}-1 \right)=18 \\
& I\left( 4 \right)={{S}_{4}}-{{S}_{3}}=\left( {{3}^{4}}-1 \right)-\left( {{3}^{3}}-1 \right)=54 \\
\end{align}\]
We can see the terms 2, 6, 18, 54 form a G.P. series. The common ratio is $k=\dfrac{6}{2}=\dfrac{18}{6}=3$.
The general term will be $I\left( r \right)=I\left( 1 \right){{k}^{r-1}}$ which is equal to $I\left( r \right)=2\times {{3}^{r-1}}$.
Therefore, $\dfrac{1}{I\left( r \right)}=\dfrac{1}{2\times {{3}^{r-1}}}$. The first term will be $\dfrac{1}{I\left( 1 \right)}=\dfrac{1}{2}$.
The sequence of $\dfrac{1}{I\left( r \right)}=\dfrac{1}{2\times {{3}^{r-1}}}$ is also a G.P. with its common ratio being $m=\dfrac{1}{3}$.
We need to find the sum of n terms as $\sum\limits_{r=1}^{n}{\dfrac{1}{I\left( r \right)}}$.
The value of $\left| m \right|=\dfrac{1}{3}<1$ for which the sum of the first n terms of an G.P. is ${{s}_{n}}=\dfrac{1}{I\left( 1 \right)}\times \dfrac{1-{{r}^{n}}}{1-r}$.
The summation notation for the series \[\dfrac{1}{2},\dfrac{1}{6},\dfrac{1}{18},...,\dfrac{1}{2\times {{3}^{r-1}}}\] will be ${{s}_{n}}=\dfrac{1}{2}\times \dfrac{1-{{\left( \dfrac{1}{2} \right)}^{n}}}{1-\left( \dfrac{1}{2} \right)}=1-\dfrac{1}{{{2}^{n}}}$.
Therefore, $\sum\limits_{r=1}^{n}{\dfrac{1}{I\left( r \right)}}$ is equal to $1-\dfrac{1}{{{2}^{n}}}$.
Note: The second sequence is a decreasing sequence where the common ratio is a positive number. The common difference will never be calculated according to the difference of greater number from the lesser number. The ratio formula should always be according $r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}}$ in its general form.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

