
If \[\sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}=9\] and \[\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}=45\], then the standard deviation of the 9 items \[{{x}_{1}},{{x}_{2}},......,{{x}_{9}}\] is: -
(a) 2
(b) 3
(c) 9
(d) 4
Answer
578.7k+ views
Hint: Apply the formula for standard deviation given as: - \[\sigma =\sqrt{\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}\], where ‘n’ is the number of terms, ‘\[\sigma \]’ is the notation of standard deviation and ‘\[\overline{x}\]’ is the average of given terms \[{{x}_{1}},{{x}_{2}},{{x}_{3}},......,{{x}_{9}}\]. To find \[\overline{x}\], use the formula, \[\overline{x}=\dfrac{\sum\limits_{i=1}^{9}{{{x}_{i}}}}{9}\]. Use the given relation, \[\sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}=9\] to get the value of \[\overline{x}\] and use the relation \[\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}=45\] to get the value of \[\sigma \].
Complete step by step answer:
We have been provided with two relations: -
\[\Rightarrow \sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}=9\] - (i)
\[\Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}=45\] - (ii)
Now, let us consider relation (i). We have,
\[\Rightarrow \sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}=9\]
The above expression is written as,
\[\Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}-\sum\limits_{i=1}^{9}{5}=9\] - (iii)
We know that if ‘k’ is a constant, then.
\[\Rightarrow \sum\limits_{i=1}^{n}{k}=nk\]
Applying this identity in equation (iii), we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}-5\times 9=9 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}=9\times 5+9 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}=54 \\
\end{align}\]
Dividing both sides by 9, we get,
\[\Rightarrow \dfrac{\sum\limits_{i=1}^{9}{{{x}_{i}}}}{9}=\dfrac{54}{9}=6\]
Since, \[\dfrac{\sum\limits_{i=1}^{9}{{{x}_{i}}}}{9}=\overline{x}\],
\[\Rightarrow \overline{x}=6\]
So, the mean of the given items \[{{x}_{1}},{{x}_{2}},{{x}_{3}},......,{{x}_{9}}\] is 6.
Now, we know that standard deviation is given by the formula: -
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\], where \[\sigma \] = standard deviation.
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{9}}\]
Substituting the value of \[\overline{x}\], we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}}{9}}\] - (iv)
Now, to find the value of the above equation, we have to consider equation (ii). Therefore, we have,
\[\Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}=45\]
This can be written as: -
\[\Rightarrow \sum\limits_{i=1}^{9}{{{\left[ \left( {{x}_{i}}-6 \right)+1 \right]}^{2}}}=45\]
Applying the identity, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{9}{\left[ {{\left( {{x}_{i}}-6 \right)}^{2}}+{{1}^{2}}+2\left( {{x}_{i}}-6 \right) \right]}=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+\sum\limits_{i=1}^{9}{{{1}^{2}}}+2\times \sum\limits_{i=1}^{9}{\left( {{x}_{i}}-6 \right)}=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+\sum\limits_{i=1}^{9}{1}+2\times \sum\limits_{i=1}^{9}{\left[ \left( {{x}_{i}}-5 \right)-1 \right]}=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+\sum\limits_{i=1}^{9}{1}+2\sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}-2\sum\limits_{i=1}^{9}{1}=45 \\
\end{align}\]
Substituting the value of \[\sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}\] in the above relation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+1\times 9+2\times 9-2\times 9=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+9=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}=36 \\
\end{align}\]
Substituting the above value in equation (iv), we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{36}{9}}\]
\[\Rightarrow \sigma =\sqrt{4}\]
\[\Rightarrow \sigma =2\]
So, the correct answer is “Option a”.
Note: One may note that we have written \[\left( {{x}_{i}}-5 \right)\] as \[\left( {{x}_{i}}-6+1 \right)\]. This is because in the expression of standard deviation we were required to find the value of \[\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}\]. This was only possible when we used the above transformation. You must remember that, never try to break the term \[\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}\] into 9 terms by removing the summation sign. This will lead us to some difficult calculations.
Complete step by step answer:
We have been provided with two relations: -
\[\Rightarrow \sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}=9\] - (i)
\[\Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}=45\] - (ii)
Now, let us consider relation (i). We have,
\[\Rightarrow \sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}=9\]
The above expression is written as,
\[\Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}-\sum\limits_{i=1}^{9}{5}=9\] - (iii)
We know that if ‘k’ is a constant, then.
\[\Rightarrow \sum\limits_{i=1}^{n}{k}=nk\]
Applying this identity in equation (iii), we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}-5\times 9=9 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}=9\times 5+9 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{x}_{i}}}=54 \\
\end{align}\]
Dividing both sides by 9, we get,
\[\Rightarrow \dfrac{\sum\limits_{i=1}^{9}{{{x}_{i}}}}{9}=\dfrac{54}{9}=6\]
Since, \[\dfrac{\sum\limits_{i=1}^{9}{{{x}_{i}}}}{9}=\overline{x}\],
\[\Rightarrow \overline{x}=6\]
So, the mean of the given items \[{{x}_{1}},{{x}_{2}},{{x}_{3}},......,{{x}_{9}}\] is 6.
Now, we know that standard deviation is given by the formula: -
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{n}}\], where \[\sigma \] = standard deviation.
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-\overline{x} \right)}^{2}}}}{9}}\]
Substituting the value of \[\overline{x}\], we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}}{9}}\] - (iv)
Now, to find the value of the above equation, we have to consider equation (ii). Therefore, we have,
\[\Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}=45\]
This can be written as: -
\[\Rightarrow \sum\limits_{i=1}^{9}{{{\left[ \left( {{x}_{i}}-6 \right)+1 \right]}^{2}}}=45\]
Applying the identity, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\], we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{9}{\left[ {{\left( {{x}_{i}}-6 \right)}^{2}}+{{1}^{2}}+2\left( {{x}_{i}}-6 \right) \right]}=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+\sum\limits_{i=1}^{9}{{{1}^{2}}}+2\times \sum\limits_{i=1}^{9}{\left( {{x}_{i}}-6 \right)}=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+\sum\limits_{i=1}^{9}{1}+2\times \sum\limits_{i=1}^{9}{\left[ \left( {{x}_{i}}-5 \right)-1 \right]}=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+\sum\limits_{i=1}^{9}{1}+2\sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}-2\sum\limits_{i=1}^{9}{1}=45 \\
\end{align}\]
Substituting the value of \[\sum\limits_{i=1}^{9}{\left( {{x}_{i}}-5 \right)}\] in the above relation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+1\times 9+2\times 9-2\times 9=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}+9=45 \\
& \Rightarrow \sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}=36 \\
\end{align}\]
Substituting the above value in equation (iv), we get,
\[\Rightarrow \sigma =\sqrt{\dfrac{36}{9}}\]
\[\Rightarrow \sigma =\sqrt{4}\]
\[\Rightarrow \sigma =2\]
So, the correct answer is “Option a”.
Note: One may note that we have written \[\left( {{x}_{i}}-5 \right)\] as \[\left( {{x}_{i}}-6+1 \right)\]. This is because in the expression of standard deviation we were required to find the value of \[\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-6 \right)}^{2}}}\]. This was only possible when we used the above transformation. You must remember that, never try to break the term \[\sum\limits_{i=1}^{9}{{{\left( {{x}_{i}}-5 \right)}^{2}}}\] into 9 terms by removing the summation sign. This will lead us to some difficult calculations.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

