
If \[\sqrt {\dfrac{{1 - \sin A}}{{1 - \sin A}}} = \dfrac{{\sin A}}{{\cos A}} = \dfrac{1}{{\cos A}}\], for all permissible values of \[{\mathbf{A}}\], then \[{\mathbf{A}}\]belongs to
(A) First Quadrant
(B) Second Quadrant
(C) Third Quadrant
(D) Fourth Quadrant
Answer
507.6k+ views
Hint: Trigonometric functions are used in this problem. So, firstly, we are to solve the left hand side separately and then we need to compare it with the right hand side of the given problem.
Now, we know that all the Trigonometric ratios are positive in ${1^{st}}$quadrant, only $\operatorname{Sin} \theta $ and $\operatorname{Cos} ec\theta $ are positive in $II$quadrant, only $\operatorname{Tan} \theta $ and $Cot\theta $ are positive in $III$ quadrant, only $\operatorname{Cos} \theta $ & $\operatorname{Sec} \theta $ are positive in $IV$ quadrant.
Complete step-by-step answer:
As, we are already given that
\[\sqrt {\dfrac{{1 - \sin A}}{{1 + \sin A}}} + \dfrac{{\sin A}}{{\cos A}} = \dfrac{1}{{\cos A}}\]
i.e. \[\sqrt {\dfrac{{1 - \sin A}}{{1 + \sin A}}} = \dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}}\]
Step 2: Now, consider the left hand side only i.e.
\[\sqrt {\dfrac{{1 - \sin A}}{{1 + \sin A}}} \]
Step 3: On multiplying \[\sqrt {1 - \sin A} \] with the numerator as well as denominator, we get
\[\sqrt {\dfrac{{{{(1 - \sin A)}^2}}}{{(1 + \sin A)(1 - \operatorname{Sin} A)}}} \]
Step 4: On using the identity \[(a + b)(a - b) = {a^2} - {b^2}\]we get..
$\Rightarrow$ \[\sqrt {\dfrac{{{{(1 - \sin A)}^2}}}{{1 - \sin A}}} = \sqrt {\dfrac{{{{(1 - \sin A)}^2}}}{{{{\cos }^2}A}}} \]
because \[1 - {\sin ^2}A = {\cos ^2}A\]
Step 5: Rearrange & solve the terms..
$\Rightarrow$ \[\sqrt {{{\left( {\dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}}} \right)}^2}} = \left| {\dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}} \right|\]
Whereas the given right hand side is
$\Rightarrow$ \[\dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}\]
Hence
$\Rightarrow$ \[\left| {\dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}} \right| = \dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}\]
Consider, $\left( {\dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}}} \right) = y$
Therefore, $\left| y \right| = y$ which is possible if and only if \[y \geqslant 0\]
Hence, $\dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}} \geqslant 0$
$\dfrac{1}{{\cos A}}\left( {1 - \sin A} \right) \geqslant 0$
Which is possible if $\cos A$ is positive. Which is possible if and only if $A$ lies either in $I$ quad or $IV$ quad.
Note: There are $4$ quadrants in the Trigonometry. In which all the trigonometric ratios are positive in the ${1^{st}}$ one whereas pairs of trigonometric ratios are positive in the rest of the quadrants.
In the $I$quad, $\theta $ lies between $0$ to $\dfrac{\pi }{2}$. In the $II$quad, $\theta $lies between $\dfrac{\pi }{2}$ to $\pi $. In the $III$ quad, $\theta $ lies between $\pi $ to $\dfrac{{3\pi }}{2}$. In the $IV$quad, $\theta $ lies between $\dfrac{{3\pi }}{2}$to$2\pi $.
Modulus of $x$ will be equal to $x$itself, if and only if $x$ is positive or zero. Hence the correct options are $(A)$ and$(B)$.
Now, we know that all the Trigonometric ratios are positive in ${1^{st}}$quadrant, only $\operatorname{Sin} \theta $ and $\operatorname{Cos} ec\theta $ are positive in $II$quadrant, only $\operatorname{Tan} \theta $ and $Cot\theta $ are positive in $III$ quadrant, only $\operatorname{Cos} \theta $ & $\operatorname{Sec} \theta $ are positive in $IV$ quadrant.
Complete step-by-step answer:
As, we are already given that
\[\sqrt {\dfrac{{1 - \sin A}}{{1 + \sin A}}} + \dfrac{{\sin A}}{{\cos A}} = \dfrac{1}{{\cos A}}\]
i.e. \[\sqrt {\dfrac{{1 - \sin A}}{{1 + \sin A}}} = \dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}}\]
Step 2: Now, consider the left hand side only i.e.
\[\sqrt {\dfrac{{1 - \sin A}}{{1 + \sin A}}} \]
Step 3: On multiplying \[\sqrt {1 - \sin A} \] with the numerator as well as denominator, we get
\[\sqrt {\dfrac{{{{(1 - \sin A)}^2}}}{{(1 + \sin A)(1 - \operatorname{Sin} A)}}} \]
Step 4: On using the identity \[(a + b)(a - b) = {a^2} - {b^2}\]we get..
$\Rightarrow$ \[\sqrt {\dfrac{{{{(1 - \sin A)}^2}}}{{1 - \sin A}}} = \sqrt {\dfrac{{{{(1 - \sin A)}^2}}}{{{{\cos }^2}A}}} \]
because \[1 - {\sin ^2}A = {\cos ^2}A\]
Step 5: Rearrange & solve the terms..
$\Rightarrow$ \[\sqrt {{{\left( {\dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}}} \right)}^2}} = \left| {\dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}} \right|\]
Whereas the given right hand side is
$\Rightarrow$ \[\dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}\]
Hence
$\Rightarrow$ \[\left| {\dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}} \right| = \dfrac{1}{{\cos A}} = \dfrac{{\sin A}}{{\cos A}}\]
Consider, $\left( {\dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}}} \right) = y$
Therefore, $\left| y \right| = y$ which is possible if and only if \[y \geqslant 0\]
Hence, $\dfrac{1}{{\cos A}} - \dfrac{{\sin A}}{{\cos A}} \geqslant 0$
$\dfrac{1}{{\cos A}}\left( {1 - \sin A} \right) \geqslant 0$
Which is possible if $\cos A$ is positive. Which is possible if and only if $A$ lies either in $I$ quad or $IV$ quad.
Note: There are $4$ quadrants in the Trigonometry. In which all the trigonometric ratios are positive in the ${1^{st}}$ one whereas pairs of trigonometric ratios are positive in the rest of the quadrants.
In the $I$quad, $\theta $ lies between $0$ to $\dfrac{\pi }{2}$. In the $II$quad, $\theta $lies between $\dfrac{\pi }{2}$ to $\pi $. In the $III$ quad, $\theta $ lies between $\pi $ to $\dfrac{{3\pi }}{2}$. In the $IV$quad, $\theta $ lies between $\dfrac{{3\pi }}{2}$to$2\pi $.
Modulus of $x$ will be equal to $x$itself, if and only if $x$ is positive or zero. Hence the correct options are $(A)$ and$(B)$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
