
If \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \cos ecA = \cot A\], then \[{\mathbf{A}}\], \[{\mathbf{A}}\]lies in the quadrants.
(A) I, II
(B) II, III
(C) I, III
(D) I, IV
Answer
568.8k+ views
Hint: Trigonometric functions are used in this problem. So, firstly we all solve the left-hand side separately, and then we need to compare it to the right-hand side of the given problem.
Now, we know that all the Trigonometric ratios are positive in ${1^{st}}$a quadrant, only $\operatorname{sin} \theta $ and $\operatorname{cos} ec\theta $ are positive in $II$the quadrant, only $\operatorname{tan} \theta $ and $cot\theta $ are positive in $III$ the quadrant, only $\operatorname{Cos} \theta $ & $\operatorname{sec} \theta $ are positive in $IV$ the quadrant.
Complete step-by-step answer:
Step 1: Take the left had the side of the given
Problem i.e.
\[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} \]
Step 2: Multiply the numerator & denominator $(1 + \cos A)$inside the square root.
i.e. \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{(1 - \cos A)(1 + \cos A)}}} \]
Step 3: On solving the denominator using the identity \[(a - b)(a + b) = {a^2} - {b^2}\] , we get.
$\Rightarrow$ \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{1 - {{\cos }^2}A}}} \]
Step 4: We know that, \[1 - {\cos ^2}A - {\sin ^2}A\]
Because, \[{\sin ^2}A - {\cos ^2}A = 1\]
On putting the value of ${\sin ^2}A$in the, we get
$\Rightarrow$ \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{{{\sin }^2}A}}} \]
Step 5: On rearranging the terms, we get
$\Rightarrow$ $\sqrt {\dfrac{{{{\left( {1 + \cos A} \right)}^2}}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{{{\sin }^2}A}}} $
Step 6: We know that, $\dfrac{1}{{\sin \theta }} = \cos ec\theta $
and $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $
On putting these values, we get
$\Rightarrow$ \[\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \sqrt {{{\left( {\cos ecA + \cot A} \right)}^2}} \]
$ = \left| {\cos ecA + \cot A} \right|$
Step 7: Now according to us,
$\Rightarrow$ \[\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \left| {\cos ecA + \cot A} \right|\]
But, according to the given problem,
$\Rightarrow$ \[\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \cos ecA + \cot A\]
Step 8: Therefore,
$\Rightarrow$ \[\left| {\cos ecA + \cot A} \right| = \cos ecA + \cot A\]
Considering \[\cos ecA + \cot A = x\]
i.e. \[\left| x \right| = x\] if and only if \[x \geqslant 0\]
Step 9: That means,
$\Rightarrow$ \[x = \cos ecA + \cot A \geqslant 0\]
This implies, \[\sin A > 0\]
Which is possible if \[A\] lies either in $I$quadrant or $II$quadrant.
Note: There are $4$ quadrants in the Trigonometry. In which all the trigonometric ratios are positive in the ${I^{st}}$ one whereas pairs of trigonometric ratios are positive in the rest of the quadrants.
In the $I$quad, $\theta $ lies between $0$ to $\dfrac{\pi }{2}$. In the $II$ quad, $\theta $lies between $\dfrac{\pi }{2}$ to $\pi $. In the $III$ quad, $\theta $ lies between $\pi $ to $\dfrac{{3\pi }}{2}$. In the $IV$ quad, $\theta $ lies between $\dfrac{{3\pi }}{2}$ to $2\pi $.
Modulus of $x$ will be equal to $x$ itself, if and only if $x$ is positive or zero. Hence the correct options are $(A)$$I,II$quadrant.
Now, we know that all the Trigonometric ratios are positive in ${1^{st}}$a quadrant, only $\operatorname{sin} \theta $ and $\operatorname{cos} ec\theta $ are positive in $II$the quadrant, only $\operatorname{tan} \theta $ and $cot\theta $ are positive in $III$ the quadrant, only $\operatorname{Cos} \theta $ & $\operatorname{sec} \theta $ are positive in $IV$ the quadrant.
Complete step-by-step answer:
Step 1: Take the left had the side of the given
Problem i.e.
\[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} \]
Step 2: Multiply the numerator & denominator $(1 + \cos A)$inside the square root.
i.e. \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{(1 - \cos A)(1 + \cos A)}}} \]
Step 3: On solving the denominator using the identity \[(a - b)(a + b) = {a^2} - {b^2}\] , we get.
$\Rightarrow$ \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{1 - {{\cos }^2}A}}} \]
Step 4: We know that, \[1 - {\cos ^2}A - {\sin ^2}A\]
Because, \[{\sin ^2}A - {\cos ^2}A = 1\]
On putting the value of ${\sin ^2}A$in the, we get
$\Rightarrow$ \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{{{\sin }^2}A}}} \]
Step 5: On rearranging the terms, we get
$\Rightarrow$ $\sqrt {\dfrac{{{{\left( {1 + \cos A} \right)}^2}}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{{{\sin }^2}A}}} $
Step 6: We know that, $\dfrac{1}{{\sin \theta }} = \cos ec\theta $
and $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $
On putting these values, we get
$\Rightarrow$ \[\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \sqrt {{{\left( {\cos ecA + \cot A} \right)}^2}} \]
$ = \left| {\cos ecA + \cot A} \right|$
Step 7: Now according to us,
$\Rightarrow$ \[\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \left| {\cos ecA + \cot A} \right|\]
But, according to the given problem,
$\Rightarrow$ \[\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \cos ecA + \cot A\]
Step 8: Therefore,
$\Rightarrow$ \[\left| {\cos ecA + \cot A} \right| = \cos ecA + \cot A\]
Considering \[\cos ecA + \cot A = x\]
i.e. \[\left| x \right| = x\] if and only if \[x \geqslant 0\]
Step 9: That means,
$\Rightarrow$ \[x = \cos ecA + \cot A \geqslant 0\]
This implies, \[\sin A > 0\]
Which is possible if \[A\] lies either in $I$quadrant or $II$quadrant.
Note: There are $4$ quadrants in the Trigonometry. In which all the trigonometric ratios are positive in the ${I^{st}}$ one whereas pairs of trigonometric ratios are positive in the rest of the quadrants.
In the $I$quad, $\theta $ lies between $0$ to $\dfrac{\pi }{2}$. In the $II$ quad, $\theta $lies between $\dfrac{\pi }{2}$ to $\pi $. In the $III$ quad, $\theta $ lies between $\pi $ to $\dfrac{{3\pi }}{2}$. In the $IV$ quad, $\theta $ lies between $\dfrac{{3\pi }}{2}$ to $2\pi $.
Modulus of $x$ will be equal to $x$ itself, if and only if $x$ is positive or zero. Hence the correct options are $(A)$$I,II$quadrant.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

